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two factors do interact because the effect of one drug is different 
depending on the presence of the other.

There are various ways in which effects can combine; their 
clear and concise reporting is important. For a 2 × 2 design with 
two levels per factor, effects can be estimated directly from treat-
ment means. In this case, effects should be summarized with their 
estimated value and a confidence interval (CI) and graphically 
reported as a plot of means with error bars2. Optionally, a two-
sample t-test can be used to provide a P value for the null hypoth-
esis that the two treatments have the same effect—a zero difference 
in their means. For example, with levels a/A and b/B we have four 
treatment means mab, mAb, maB and mAB. The effect of A at level b 
is mAb – mab, which is estimated by substituting the observed sam-
ple means. The standard error of this estimate is s.e. = s√(1/nAb +  
1/nab), where s is the estimate of the population standard deviation, 
estimated by √MSE, where MSE is the residual mean square from the 
ANOVA, and nij is the observed sample size for treatment A = i and 
B = j. If the design is balanced, nAb = nab = n and s.e. = √(2MSE/n). 
The t-statistic is t = ( Ab – ab)/s.e. The CI can be constructed using 
Ab – ab ± t* × s.e., where t* is the critical value for the t-statistic at the 
desired a. Note, however, that the degrees of freedom (d.f.) are the 
error d.f. from the ANOVA, not 2(n – 1) as in the usual two-sample 
t-test2, because the MSE rather than the sample variances is used in 
the s.e. computation. 

When there are more factors or more levels, the main effects and 
interactions are summarized over many comparisons as sums of 
squares (SS) and usually only the test statistic (F-test), its d.f. and the 
P value are reported. If there are statistically significant interactions, 
pairwise comparisons of different levels of one factor for fixed levels 
of the other factors (sometimes called simple main effects) are often 
computed in the manner described above. If the interactions are not 
significant, we typically compute differences between levels of one fac-
tor averaged over the levels of the other factor. Again, these are pair-
wise comparisons between means that are handled as just described, 
except that the sample sizes are also summed over the levels.

To illustrate the two-factor design analysis, we’ll use a simulated 
data set in which the effect of levels of the drug and diet were tested 
in two different designs, with 8 mice and 8 observations (Fig. 2a). 
We’ll assume an experimental protocol in which a mouse liver tis-
sue sample is tested for glucose levels using two-way ANOVA. Our 
simulated simple effects are shown in Figure 1b—the increase in 
the response variable is 0.5 (A/b), 1 (a/B) and 3 (A/B). The two 
drugs are synergistic—A is 4× as potent in the presence of B, as can 
be seen by (μAB – μaB)/(μAb – μab) = ΔB/Δb = 2/0.5 = 4 (Table 1). 
We’ll assume the same variation due to mice and measurement 
error, s2 = 0.25.

POINTS OF SIGNIFICANCE

Two-factor designs
When multiple factors can affect a system, allowing 
for interaction can increase sensitivity.

When probing complex biological systems, multiple experimen-
tal factors may interact in producing effects on the response. For 
example, in studying the effects of two drugs that can be admin-
istered simultaneously, observing all the pairwise level combina-
tions in a single experiment is more revealing than varying the 
levels of one drug at a fixed level of the other. If we study the drugs 
independently we may miss biologically relevant insight about 
synergies or antisynergies and sacrifice sensitivity in detecting 
the drugs’ effects.

The simplest design that can illustrate these concepts is the 2 × 2 
design, which has two factors (A and B), each with two levels (a/A 
and b/B). Specific combinations of factors (a/b, A/b, a/B, A/B) are 
called treatments. When every combination of levels is observed, the 
design is said to be a complete factorial or completely crossed design. 
So this is a complete 2 × 2 factorial design with four treatments.

Our previous discussion about experimental designs was limited 
to the study of a single factor for which the treatments are the factor 
levels. We used ANOVA1 to determine whether a factor had an effect 
on the observed variable and followed up with pairwise t-tests2 to 
isolate the significant effects of individual levels. We now extend the 
ANOVA idea to factorial designs. Following the ANOVA analysis, 
pairwise t-tests can still be done, but often analysis focuses on a dif-
ferent set of comparisons: main effects and interactions.

Figure 1 illustrates some possible outcomes in a 2 × 2 factorial 
experiment (values in Table 1). Suppose that both factors corre-
spond to drugs and the observed variable is liver glucose level. In 
Figure 1a, drugs A and B increase glucose levels by 1 unit. Because 
neither drug influences the effect of the other we say there is no 
interaction and that the effects are additive. In Figure 1b, the effect 
of A in the presence of B is larger than the sum of their effects when 
they are administered separately (3 vs. 0.5 + 1). When the effect of 
the levels of a factor depends on the levels of other factors, we say 
that there is an interaction between the factors. In this case, we need 
to be careful about defining the effects of each factor.

The main effect of factor A is defined as the difference in the 
means of the two levels of A averaged over all the levels of B. For 
Figure 1b, the average for level a is τ = (0 + 1)/2 = 0.5 and for level A is 
τ = (0.5 + 3)/2 = 1.75, giving a main effect of 1.75 – 0.5 = 1.25 (Table 1).  
Similarly, the main effect of B is 2 – 0.25 = 1.75. The interaction 
compares the differences in the mean of A at the two levels of B (2 – 
0.5 = 1.5; in the D row) or, equivalently, the differences in the mean 
of B at the two levels of A (2.5 – 1 = 1.5). Interaction plots are useful 
to evaluate effects when the number of factors is small (line plots, 
Fig 1b). The x axis represents levels of one factor and lines corre-
spond to levels of other factors. Parallel lines indicate no interaction. 
The more the lines diverge, or cross, the greater the interaction.

Figure 1c shows an interaction effect with no main effect. This 
can happen if one factor increases the response at one level of the 
other factor but decreases it at the other. Both factors have the 
same average value for each of their levels, t = 0.5. However, the 

Figure 1 | When studying multiple factors, main and interaction effects can 
be observed, shown here for two factors (A, blue; B, red) with two levels 
each. (a) The main effect is the difference between t values (light gray), 
which is the response for a given level of a factor averaged over the levels 
of other factors. (b) The interaction effect is the difference between effects 
of A at the different levels of B or vice versa (dark gray, D). (c) Interaction 
effects may mask main effects.

Main effect Main and interaction effects Interaction effectb ca

τττ
Δ

τ

Δ

τ

Δ

τ

A

B

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1188 | VOL.11 NO.12 | DECEMBER 2014 | NATURE METHODS

THIS MONTH

find a = 0.57, A = 1.42, b = –0.06 and B = 2.05. The residu-
al error MSE = 0.5 is used to calculate the s.e. of main effects: 
√(2MSE/n) = √(2 × 0.5/4) = 0.5. The critical t-value at a = 0.05 
and d.f. = 4 is 2.78, giving a 95% CI for the main effect of A to 
be 0.9 ± 1.4 (F1,4 = 2.9), where d.f. = (1,4) and of B to be 2.1 ± 1.4 
(F1,4 = 17.6). The CIs reflect that we detected the main effect of B 
but not of A. For the interaction, we find ( AB – aB) – ( Ab – ab) = 
3.0 with s.e. = 1 and a CI of 3.0 ± 2.8 (F1,4 = 9.1). 

To improve the sensitivity of detecting an effect of A, we can miti-
gate biological variability in mice by using a randomized complete 
block approach1 (Fig. 2a). If the mice share some characteristic, 
such as litter or weight which contributes to response variability, we 
could control for some of the variation by assigning one complete 
replicate to each batch of similar mice. The total number of obser-
vations will still be 8, and we will track the mouse batch across mea-
surements and use the batch as a random blocking factor2. Now, in 
addition to the effect of interaction, we can further reduce the MSE 
by the amount of variance explained by the block (Fig. 2b).

The sum-of-squares partitioning and P values for the block-
ing scenario are shown in Figure 2b. In each case, the SSE value 
is proportionately lower than in the completely randomized 
design, which makes the tests more sensitive. Once we incorpo-
rate blocking and interaction, we are able to detect both main 
and interaction effects and account for nearly all of the vari-
ance due to sources other than measurement error (SSE = 0.8,  
MSE = 0.25). The interpretation of P = 0.01 for the blocking factor 
M is that the biological variation due to the blocking factor has a 
nonzero variance. Effects and CIs are calculated just as for the com-
pletely randomized design—although the means have two sources 
of variance (block effect and MSE), their difference has only one 
(MSE) because the block effect cancels.

With two factors, more complicated designs are also possible. For 
example, we might expose the whole mouse to a drug (factor A)  
in vivo and then expose two liver samples to different in vitro treat-
ments (factor B). In this case, the two liver samples from the same 
mouse form a block that is nested in mouse.

We might also consider factorial designs with more levels per 
factor or more factors. If the response to our two drugs depends on 
genotype, we might consider using three genotypes in a 2 × 2 × 3 
factorial design with 12 treatments. This design allows for the possi-
bility of interactions among pairs of factors and also among all three 
factors. The smallest factorial design with k factors has two levels 
for each factor, leading to 2k treatments. Another set of designs, 
called fractional factorial designs, used frequently in manufactur-
ing, allows for a large number of factors with a smaller number of 
samples by using a carefully selected subset of treatments. 

Complete factorial designs are the simplest designs that allow us 
to determine synergies among factors. The added complexity in 
visualization, summary and analysis is rewarded by an enhanced 
ability to understand the effects of multiple factors acting in unison.
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We’ll use a completely randomized design with each of the 8 mice 
randomly assigned to one of the four treatments in a balanced fash-
ion each providing a single liver sample (Fig. 2a). First, let’s test the 
effect of the two factors separately using one-way ANOVA, averaging 
over the values of the other factor. If we consider only A, the effects of 
B are considered part of the residual error and we do not detect any 
effect (P = 0.48, Fig. 2b). If we consider only B, we can detect an effect 
(P = 0.04) because B has a larger main effect (2.0 – 0.25 = 1.75) than  
A (1.75 – 0.5 = 1.25). 

When we test for multiple factors, the ANOVA calculation parti-
tions the total sum of squares, SST, into components that correspond 
to A (SSA), B (SSB) and the residual (SSE) (Fig. 2b). The additive two-
factor model assumes that there is no interaction between A and B—
the effect of a given level of A does not depend on a level of B. In this 
case, the interaction component is assumed to be part of the error. If 
this assumption is relaxed, we can partition the total variance into four 
components, now accounting for how the response of A varies with 
B. In our example, the SSA and SSB terms remain the same, but SSE 
is reduced by the amount of SSAB (4.6), to 2.0 from 6.6. The resulting 
reduction in MSE (0.5 vs. 1.3) corresponds to the variance explained by 
the interaction between the two factors. When interaction is accounted 
for, the sensitivity of detecting an effect of A and B is increased because 
the F-ratio, which is inversely proportional to MSE, is larger.

To calculate the effect and interaction CIs, as described above, 
we start with the treatment means ab = 0.27, Ab = –0.39, aB = 
0.86 and AB = 3.23, each calculated from two values. To calculate 
the main effects of A and B, we average over four measurements to 

Table 1 | Quantities used to determine main and interaction 
effects from data in Figure 1

Main effect
Main and  

interaction effects Interaction effect

b B t b B t b B t

a 0 1 0.5 0 1 0.5 0 1 0.5

A 1 2 1.5 0.5 3 1.75 1 0 0.5

0.5 1.5 0.25 2 0.5 0.5

1 1 0.5 2 1 –1

Treatment values shown are means for a/b, a/B, A/b and A/B level combinations. A main effect is 
observed if the difference between t values (e.g., 1.5 – 0.5 = 1) is nonzero. An interaction effect is 
observed if D, the difference between the mean levels of A, varies across levels of B or vice versa.

Figure 2 | In two-factor experiments, variance is partitioned between each 
factor and all combinations of interactions of the factors. (a) Two common two-
factor designs with 8 measurements each. In the CR scenario, each mouse is 
randomly assigned a single treatment. Variability among mice can be mitigated 
by grouping mice by similar characteristics (e.g., litter or weight). The group 
becomes a block. Each block is subject to all treatments. (b) Partitioning of the 
total sum of squares (SST; CR, 16.9; RCB, 26.4) and P values for the CR and RCB 
designs in a. M represents the blocking factor. Vertical axis is relative to the 
SST. The total d.f. in both cases = 7; all other d.f. = 1.
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