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simultaneously measuring the variability required to estimate how 
much we expect the effect to differ if the measurements are repeated 
with similar but not identical samples (replicates).

When administering the treatment in vivo, we can never control 
the many sources of biological variability in the mice sufficiently to 
achieve identical measurements for different animals. However, with 
careful design, we can reduce the impact of this variability on our 
measurements by controlling some of these factors.

Genotype and gender are examples of sources of variability that are 
under complete experimental control. We can eliminate the source 
entirely by selecting a single level or select several levels so that the 
effects can be determined. For gender we can observe all the pos-
sible levels, so we can treat gender as a fixed factor in our experiment. 
Genotype can be a fixed effect (specific genotypes of interest, such as a 
mutant and its background wild type) or a random (noise) effect (sev-
eral wild-type strains representing the wild-type population). Only by 
deliberately introducing variability can we make general statements 
about treatment effect—and then only across factors that were varied.

Other sources of variability, such as diet, temperature and other 
housing effects, are under partial experimental control. Noise factors 
that cannot be controlled, or are unknown, can be handled by random 
assignment1 (to avoid bias), replication2 (to increase precision) and 
blocking3 (to isolate noise).

When dealing with variation, two principles apply: the precision 
with which we can characterize a sample (e.g., s.e.m.) and the manner in 
which variances from different sources combine together4. The s.e.m. 
of a random sample is s/√n, where s is the s.d. of the population (also 
written as Var( ) = Var(X)/n). With sufficient replication (large n),  
our precision in measuring the mean as measured by the s.e.m. can be 
made arbitrarily small (Fig. 2a). When multiple independent sources 
of variation are present, the variance of the measurement is the sum 
of individual variances.

These two principles can be combined to obtain the variation of 
the mean in a nested replication scenario2 (Supplementary Fig. 1). 
Suppose that variances due to mouse, cell and measurement are M, 
C and e (Var() is omitted for brevity). The variance of the measure-
ment of a single cell will be M + C + e, the sum of the individual 
variances. If we measure the same cell ne times, the variance of the 
average measurement will be M + C + e/ne. If we measure nC cells, 
each ne times, the variance will be M + C/nC + e/(nC × ne). Finally, 
if we repeat the procedure for nM mice, the variance will be reduced 
to M/nM + C/(nM × nC) + e/(nM × nC × ne). In general, the variance 
of each source is divided by the number of times that source is inde-
pendently sampled. This is illustrated in Figure 2b for M = 1, C = 4 
and e = 0.25. As we have already seen2, the number of replicates at 
each layer (nM, nC, ne) can be controlled to optimally reduce varia-
tion (increase power) within practical constraints (cost). For exam-
ple, to reduce the total variance to 25% of the total M + C + e, we 
can sample using nM = 4, nC = 1 or nM = nC = 3 (Fig. 2b). Sampling a 
single mouse allows us to reduce variance only to M, but it would not 
allow us to estimate the variation at the mouse layer and therefore 
would not allow for inference about the population of mice. For our 
example, technical variation is much smaller than biological varia-
tion, and technical replicates are of little value—variance is reduced 
by only 5% for nM = nC = 1 and ne = 10 (Fig. 2b, gray trace) and can 
be reduced only to M + C.

When measurements themselves are an average of a large number 
of contributing factors, biological variability of the components can 
be underestimated. For example, measuring two samples from the 
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to generalize conclusions to a population, we must 
sample its variation.

Variability is inevitable in experiments owing to both biological and 
technical effects. Whereas technical variability should be tightly con-
trolled to enhance the internal validity of the results, some types of 
biological variability need to be maintained to allow generalization 
of the results to the population of interest. Experimental control, ran-
domization, blocking and replication are the tools that allow replicable 
and meaningful results to be obtained in the face of variability. 

In previous columns we have given examples of how variation lim-
its our ability to detect effects by reducing the power of tests. This 
month we go into more detail about variability and how it affects our 
ability to replicate the experimental results (internal validity) and 
generalize from our experiment to the population (external validity).

Let’s start with an idealized experiment, which we will then expand 
upon. Suppose that we are able to culture a single murine cell under 
tightly controlled conditions so that the response of different aliquots 
of the culture is identical. Also, suppose that our measuring device 
is so accurate that the difference between measurements of an ali-
quot is below the detection limit. If measurement does not disrupt the 
cell culture, we require only a single aliquot: we measure the baseline 
response, apply the treatment and measure the treatment response. 
No replication is needed because differences between the measure-
ments can only be due to the treatment.

This idealized system has perfect internal validity—the response 
variable solely reflects the treatment effect, and repeating the experi-
ment on another aliquot from the same cell culture will give identical 
results. However, the system lacks external validity—it tells us about 
only a specific cell from a specific mouse. We know that cells vary 
within a single tissue, and that tissues vary from mouse to mouse, 
but we cannot use this ideal system to make inferences about other 
cell cultures or other mice because we have no way of determining 
how much variability to expect. To do so requires that we sample the 
biological variation across relevant experimental variables (Fig. 1).

A well-designed experiment is a compromise between internal and 
external validity. Our goal is to observe a reproducible effect that can 
be due only to the treatment (avoiding confounding and bias) while 

Figure 1 | internal and external validity relate respectively to how precise 
and representative the results are of the population of interest. (a) sampling 
only a part of the population may create precise measurements, but 
generalizing to the rest of the population can result in bias. (b) Better 
representation can be achieved by sampling across the population, but this 
can result in highly variable measurements. (c) identifying blocks of similar 
subjects within the population increases the precision (within block) and 
captures population variability (between blocks). 
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and (nM, nC, ne) = (10, 5, 3) we find Var( ) = 1/10 + 4/50 + 0.25/150 = 
0.18. The variance of the difference in the means of two measurements 
(e.g., reference and drug) will be twice this, 0.36, and our power to 
detect an effect of d = 1.5 is 0.65 (Supplementary Note).

Suppose that we discover that the mouse variation, M = 1, has sig-
nificant components from maternal and cell culture effects, given by 
variances MMAT and MCELL. In this context, we can partition M = 
MMAT + MCELL + M0, where M0 is the unique variance not attributable 
to maternal or cell culture effects. We can attempt to control maternal 
effects by using sibling pairs (a block) and subjecting one mouse from 
each pair to the drug and one to the control. As the pairs have the 
same mother, the maternal effects cancel. Similarly, variance due to 
cell culture effects can be minimized by concurrently euthanizing each 
sibling pair (another block) and jointly preparing the cell cultures.

Having blocked these two effects, although MMAT and MCELL 
still contribute to the variance for both control and drug, we have 
effectively removed them from the variance of the difference in 
means. If these effects account for half of the mouse variance, 
MMAT + MCELL = M/2 = 0.5 (using M = 1 as above), blocking reduces 
the variance in the difference by 2(MMAT + MCELL)/10 from 0.36 to 
0.26 and increases our power to 0.79 (Supplementary Note).

We can use the concept of effective sample size, n = Var(X)/Var( ), 
to demonstrate the effect of this blocking. In the nested replication 
design, n is typically smaller than the total number of measurements 
(nM × nC × ne) because we do not independently sample each source 
of variation in each measurement2 (it is largest for nC = ne = 1). As 
a result, replication at the cell and technical layers decreases Var( )  
proportionally more slowly than replication at the topmost mouse 
layer. When both maternal and cell culture effects are included, Var(X) 
= M + C + e = 5.25 and the effective sample size is n = 5.25/0.36 = 15. 
When maternal and cell effects are blocked, Var(X) remains the same, 
but now Var( ) is reduced to 0.26 and n = 5.25/0.26 = 20.

Given the choice, we should always block at the top layer because 
the noise in this layer is independently sampled the fewest times. We 
can use the effective sample size n to illustrate this. Blocking at mouse 
layer decreased M from 1 to 0.5 (by 50%) and increased n from 15 to 
20 (power from 0.65 to 0.79). In contrast, a proportional reduction in 
C from 4 to 2 increases n to 19 (power to 0.76), whereas a reduction in 
e has essentially no effect on n.

We need to distinguish between sources of variation that are nui-
sance factors in our goal to measure mean biological effects from 
those that are required to assess how much effects vary in the popula-
tion. Whereas the former should be minimized to optimize the power 
of the experiment, the latter need to be sampled and quantified so that 
we can both generalize our conclusions and robustly determine the 
uncertainty in our estimates.
Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper (doi:10.1038/nmeth.3224).
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same homogenized tissue, gives us the average of all cells. There is 
essentially no biological variation in these measurements because n in 
the s.e.m. term is very large—the only variability that we are likely to 
find is due to measurement error. We must not confuse the reproduc-
ibility of the tissue average with response of individual cells, which 
can be quite variable.

Blocking3 on a noise variable allows us to remove a noise effect by 
taking a difference of two measurements that share the same value 
of the noise (e.g., same sample before and after treatment). Blocking 
enhances external validity—within the block, variability is controlled 
as tightly as possible for internal validity. The blocks themselves 
are chosen to cover the range of variability needed to estimate the 
response variability in the population of interest (Fig. 1c). This is the 
approach taken by the paired t-test, in which the block is a subject. For 
another example, a heterogeneous tissue could not be homogenized 
and a block would be defined by a spatial boundary between different 
cells. Neglecting to account for this would disregard the block bound-
aries in Figure 1c and would reduce sensitivity.

There can also be multiple sources of technical variability, such as 
reagents, measurement platforms and personnel. The same principles 
apply as for biological inference, measures of technical variability are 
seldom of interest—the usual objective is to minimize it. Blocking may 
still be used to eliminate known sources of noise—for example, col-
laborating labs may each do one complete replicate of an experiment 
to provide sufficient replication while eliminating any variability due 
to lab effects in the treatment comparisons.

Consider an experiment that assesses the effect of a drug on the 
livers of male mice of a specific genotype, at both the animal and cell 
layers. If the drug is administered in vivo, the animal is euthanized 
and the response measured on many cells, animals exposed to the 
drug cannot be their own controls. So, we expect variability at both 
the mouse layer and the cell (within mouse) layer. As well, we expect 
variability due to cell culture and maternal effects.

In the simplest experiment, we have a nested design, with mice 
selected at random for the treatment and the control. After dissec-
tion, cells are sampled from each liver, and their response to the drug 
is measured. The total variation of the measurement is the sum of vari-
ances of each effect, weighted by the number of times the effect was 
independently sampled (Fig. 2b). Using the same variances as above 

Figure 2 | in the presence of variability, the precision in sample mean can 
be improved by increasing the sample size, or the number of replicates in a 
nested design. (a) increasing the sample size, n, improves the precision in 
the mean by 1/√n as measured by the s.e.m. the 95% Ci is a more intuitive 
measure of precision: the range of values that are not significantly different 
at a = 0.05 from the observed mean. the 95% confidence interval (Ci) 
shrinks as t*/√n, where t* is the critical value of the student’s t-distribution 
at two-tailed a = 0.05 and n – 1 degrees of freedom. t* decreases from  
4.3 (n = 3) to 2.0 (n = 50). Dotted lines represent constant multiples of the 
s.e.m. (b) for a nested design with mouse, cell and technical variances of  
M = 1, C = 4, e = 0.25 (s2

tot = 5.25), the variance of the mean decreases 
with the number of replicates at each layer.
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