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If we are interested in estimating a quantity that is a complex func-
tion of the observed data (for example, normalized protein counts 
or the output of a machine learning algorithm), a theoretical frame-
work to predict the sampling distribution may be difficult to devel-
op. Moreover, we may lack the experience or knowledge about the 
system to justify any assumptions that would simplify calculations. 
In such cases, we can apply the bootstrap instead of collecting a large 
volume of data to build up the sampling distribution empirically.

The bootstrap approximates the shape of the sampling distribu-
tion by simulating replicate experiments on the basis of the data 
we have observed. Through simulation, we can obtain s.e. values, 
predict bias, and even compare multiple ways of estimating the 
same quantity. The only requirement is that data are independently 
sampled from a single source distribution.

We’ll illustrate the bootstrap using the 1943 Luria-Delbrück 
experiment, which explored the mechanism behind mutations con-
ferring viral resistance in bacteria2. In this experiment, researchers 
questioned whether these mutations were induced by exposure to 
the virus or, alternatively, were spontaneous (occurring randomly 
at any time) (Fig. 2a). The authors reasoned that these hypotheses 
could be distinguished by growing a bacterial culture, plating it onto 
medium that contained a virus and then determining the variability 
in the number of surviving (mutated) bacteria (Fig. 2b). If the muta-
tions were induced by the virus after plating, the bacteria counts 
would be Poisson distributed. Alternatively, if mutations occurred 
spontaneously during growth of the culture, the variance would be 
higher than the mean, and the Poisson model—which has equal 
mean and variance—would be inadequate. This increase in vari-
ance is expected because spontaneous mutations propagate through 
generations as the cells multiply. We simulated 10,000 cultures to 
demonstrate this distribution; even for a small number of genera-
tions and cells, the difference in distribution shape is clear (Fig. 2c).

To quantify the difference between distributions under 
the two mutation mechanisms, Luria and Delbrück used the 
variance-to-mean ratio (VMR), which is reasonably stable between 
samples and free of bias. From the reasoning above, if the mutations 
are induced, the counts are distributed as Poisson, and we expect 
VMR = 1; if mutations are spontaneous, then VMR >> 1.

Points of SIGNIFICANCE

Sampling distributions 
and the bootstrap
The bootstrap can be used to assess uncertainty of 
sample estimates.

We have previously discussed the importance of estimating uncer-
tainty in our measurements and incorporating it into data analysis1. 
To know the extent to which we can generalize our observations, we 
need to know how our estimate varies across samples and whether 
it is biased (systematically over- or underestimating the true value).  
Unfortunately, it can be difficult to assess the accuracy and precision 
of estimates because empirical data are almost always affected by 
noise and sampling error, and data analysis methods may be com-
plex. We could address these questions by collecting more samples, 
but this is not always practical. Instead, we can use the bootstrap, a 
computational method that simulates new samples, to help deter-
mine how estimates from replicate experiments might be distributed 
and answer questions about precision and bias.

The quantity of interest can be estimated in multiple ways from a 
sample—functions or algorithms that do this are called estimators 
(Fig. 1a). In some cases we can analytically calculate the sampling 
distribution for an estimator. For example, the mean of a normal 
distribution, m, can be estimated using the sample mean. If we collect 
many samples, each of size n, we know from theory that their means 
will form a sampling distribution that is also normal with mean m 
and s.d. s/√n (s is the population s.d.). The s.d. of a sampling dis-
tribution of a statistic is called the standard error (s.e.)1 and can be 
used to quantify the variability of the estimator (Fig. 1).

The sampling distribution tells us about the reproducibility and 
accuracy of the estimator (Fig. 1b). The s.e. of an estimator is a 
measure of precision: it tells us how much we can expect estimates 
to vary between experiments. However, the s.e. is not a confidence 
interval. It does not tell us how close our estimate is to the true value 
or whether the estimator is biased. To assess accuracy, we need to 
measure bias—the expected difference between the estimate and 
the true value.

Figure 1 | Sampling distributions of estimators can be used to predict the 
precision and accuracy of estimates of population characteristics.  
(a) The shape of the distribution of estimates can be used to evaluate 
the performance of the estimator. The population distribution shown is 
standard normal (m = 0, s = 1). The sampling distribution of the sample 
means estimator is shown in red (this particular estimator is known to be 
normal with s = 1/√n for sample size n). (b) Precision can be measured 
by the s.d. of the sampling distribution (which is defined as the standard 
error, s.e.). Estimators whose distribution is not centered on the true value 
are biased. Bias can be assessed if the true value (red point) is available. 
Error bars show s.d.

Figure 2 | The Luria-Delbrück experiment studied the mechanism by which 
bacteria acquired mutations that conferred resistance to a virus. (a) Bacteria 
are grown for t generations in the absence of the virus, and N cells are 
plated onto medium containing the virus. Those with resistance mutations 
survive. (b) The relationship between the mean and variation in the number 
of cells in each culture depends on the mutation mechanism. (c) Simulated 
distributions of cell counts for both processes shown in a using 10,000 
cultures and mutation rates (0.49 induced, 0.20 spontaneous) that yield 
equal count means. Induced mutations occur in the medium (at t = 4). 
Spontaneous mutations can occur at each of the t = 4 generations. Points 
and error bars are mean and s.d. of simulated distributions (3.92 ± 2.07 
spontaneous, 3.92 ± 1.42 induced). For a small number of generations, the 
induced model distribution is binomial and approaches Poisson when t is 
large and rate is small.
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The parametric bootstrap VMR sampling distributions of 10,000 
simulated samples are shown in Figure 3b. The s.d. of these distribu-
tions is a measure of the precision of the VMR. When our assumed 
model matches the data source (negative binomial), the VMR distri-
bution simulated by the parametric bootstrap very closely approxi-
mates the VMR distribution one would obtain if we drew all the sam-
ples from the source distribution (Fig. 3b). The bootstrap sampling 
distribution s.d. matches that of the true sampling distribution (4.58).

In practice we cannot be certain that our parametric bootstrap 
model represents the distribution of the source sample. For example, 
if our source sample is drawn from a bimodal distribution instead of 
a negative binomial, the parametric bootstrap generates an inaccurate 
sampling distribution because it is limited by our erroneous assump-
tion (Fig. 3b). Because the source samples have similar mean and vari-
ance, the output of the parametric bootstrap is essentially the same as 
before. The parametric bootstrap generates not only the wrong shape 
but also an incorrect uncertainty in the VMR. Whereas the true sam-
pling distribution from the bimodal distribution has an s.d. = 1.59, the 
bootstrap (using negative binomial model) overestimates it as 4.35.

In the nonparametric bootstrap, we forego the model and approxi-
mate the population by randomly sampling (with replacement) from 
the observed data to obtain new samples of the same size. As before, 
we compute the VMR for each bootstrap sample to generate boot-
strap sampling distributions. Because the nonparametric bootstrap 
is not limited by a model assumption, it reasonably reconstructs the 
VMR sampling distributions for both source distributions. It is gen-
erally safer to use the nonparametric bootstrap when we are uncer-
tain of the source distribution. However, because the nonparametric 
bootstrap takes into account only the data observed and thus cannot 
generate very extreme samples, it may underestimate the sampling 
distribution s.d., especially when sample size is small. We see some 
evidence of this in our simulation. Whereas the true sampling dis-
tributions have s.d. values of 4.58 and 1.59 for the negative binomial 
and bimodal, respectively, the bootstrap yields 2.61 and 1.33 (43% 
and 16% lower) (Fig. 3b).

The bootstrap sampling distribution can also provide an estimate of 
bias, a systematic difference between our estimate of the VMR and the 
true value. Recall that the bootstrap approximates the whole popula-
tion by the data we have observed in our initial sample. Therefore, if 
we treat the VMR derived from the sample used for bootstrapping as 
the true value and find that our bootstrap estimates are systematically 
smaller or larger than this value, then we can predict that our initial 
estimate is also biased. In our simulations we did not see any signifi-
cant sign of bias—means of bootstrap distributions were close to the 
sample VMR.

The simplicity and generality of bootstrapping allow for analysis of 
the stability of almost any estimation process, such as generation of 
phylogenetic trees or machine learning algorithms.
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Unfortunately, measuring the uncertainty in the VMR is dif-
ficult because its sampling distribution is hard to derive for 
small sample sizes. Luria and Delbrück plated 5–100 cultures per 
experiment to measure this variation before being able to rule 
out the induction mechanism. Let’s see how the bootstrap can be 
used to estimate the uncertainty and bias of the VMR using mod-
est sample sizes; applying it to distinguish between the mutation 
mechanisms is beyond the scope of this column.

Suppose that we perform a similar experiment with 25 cultures 
and use the count of cells in each culture as our sample (Fig. 3a). 
We can use our sample’s mean (5.48) and variance (55.3) to calcu-
late VMR = 10.1, but because we don’t have access to the sampling 
distribution, we don’t know the uncertainty. Instead of plating 
more cultures, let’s simulate more samples with the bootstrap. To 
demonstrate differences in the bootstrap, we will consider two 
source samples, one drawn from a negative binomial and one 
from a bimodal distribution of cell counts (Fig. 3b). Each distri-
bution is parameterized to have the same VMR = 10 (m = 5, s2 = 
50). The negative binomial distribution is a generalized form of 
the Poisson distribution and models discrete data with indepen-
dently specified mean and variance, which is required to allow 
for different values of VMR. For the bimodal distribution we use 
a combination of two Poisson distributions. The source samples 
generated from these distributions were selected to have the same 
VMR = 10.1, very close to their populations’ VMR = 10.

We will discuss two types of bootstrap: parametric and non-
parametric. In the parametric bootstrap, we use our sample to 
estimate the parameters of a model from which further samples 
are simulated. Figure 3a shows a source sample drawn from the 
negative binomial distribution together with four samples simu-
lated using a parametric bootstrap that assumes a negative bino-
mial model. Because the parametric bootstrap generates samples 
from a model, it can produce values that are not in our sample, 
including values outside of the range of observed data, to create 
a smoother distribution. For example, the maximum value in our 
source sample is 29, whereas one of the simulated samples in Figure 
3a includes 30. The choice of model should be based on our knowl-
edge of the experimental system that generated the original sample.

Figure 3 | The sampling distribution of complex quantities such as the 
variance-to-mean ratio (VMR) can be generated from observed data using 
the bootstrap. (a) A source sample (n = 25, mean = 5.48, variance = 55.3, 
VMR = 10.1), generated from negative binomial distribution (m = 5,  
s2 = 50, VMR = 10), was used to simulate four samples (hollow circles) with 
parametric (blue) and nonparametric bootstrap (red). (b) VMR sampling 
distributions generated from parametric (blue) and nonparametric (red) 
bootstrap of 10,000 samples (n = 25) simulated from source samples drawn 
from two different distributions: negative binomial and bimodal, both with 
m = 5 and s2 = 50, shown as black histograms with the source samples 
shown below. Points and error bars show mean and s.d. of the respective 
sampling distributions of VMR. Values beside error bars show s.d.
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