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POINTS OF SIGNIFICANCE

Replication
Quality is often more important than quantity.

Science relies heavily on replicate measurements. Additional repli-
cates generally yield more accurate and reliable summary statistics in 
experimental work. But the straightforward question, ‘how many and 
what kind of replicates should I run?’ belies a deep set of distinctions 
and tradeoffs that affect statistical testing. We illustrate different types 
of replication in multilevel (‘nested’) experimental designs and clarify 
basic concepts of efficient allocation of replicates. 

Replicates can be used to assess and isolate sources of variation in 
measurements and limit the effect of spurious variation on hypoth-
esis testing and parameter estimation. Biological replicates are parallel 
measurements of biologically distinct samples that capture random 
biological variation, which may itself be a subject of study or a noise 
source. Technical replicates are repeated measurements of the same 
sample that represent independent measures of the random noise 
associated with protocols or equipment. For biologically distinct con-
ditions, averaging technical replicates can limit the impact of measure-
ment error, but taking additional biological replicates is often prefer-
able for improving the efficiency of statistical testing. 

Nested study designs can be quite complex and include many lev-
els of biological and technical replication (Table 1). The distinction 
between biological and technical replicates depends on which sources 
of variation are being studied or, alternatively, viewed as noise sources.

An illustrative example is genome sequencing, where base calls (a 
statistical estimate of the most likely base at a given sequence posi-
tion) are made from multiple DNA reads of the same genetic locus. 
These reads are technical replicates that sample the uncertainty in the 
sequencer readout but will never reveal errors present in the library 
itself. Errors in library construction can be mitigated by construct-
ing technical replicate libraries from the same sample. If additional 
resources are available, one could potentially return to the source tis-
sue and collect multiple samples to repeat the entire sequencing work-

flow. Such replicates would be technical if the samples were considered 
to be from the same aliquot or biological if considered to be from dif-
ferent aliquots of biologically distinct material1. Owing to historically 
high costs per assay, the field of genome sequencing has not demand-
ed such replication. As the need for accuracy increases and the cost of 
sequencing falls, this is likely to change. 

How does one determine the types, levels and number of rep-
licates to include in a study, and the extent to which they con-
tribute information about important sources of variation? We 
illustrate the approach to answering these questions with a 
single-cell sequencing scenario in which we measure the expres-
sion of a specific gene in liver cells in mice. We simulated  three 
levels of replication: animals, cells and measurements (Fig. 1a).  
Each level has a different variance, with animals (σA

2
 = 1) and cells  

(σC
2

 = 2) contributing to a total biological variance of σB
2 = 3. When 

technical variance from the assay (σM
2= 0.5) is included, these dis-

tributions compound the uncertainty in the measurement for a total 
variance of σTOT

2 = 3.5. We next simulated 48 measurements, allocat-
ed variously between biological replicates (the number of animals, nA 
and number of cells sampled per animal, nC) and technical replicates 
(number of measurements taken per cell, nM) for a total number of 
measurements nAnCnM = 48. Although we will always make 48 mea-
surements, the effective sample size, n, will vary from about 2 to 48, 
depending on how the measurements are allocated. Let us look at how 
this comes about.

Our ability to make accurate inferences will depend on our 
estimate of the variance in the system, Var(X). Different choic-
es of nA, nC and nM impact this value differently. If we sample 
nC = 48 cells from a single animal (nA = 1) and measure each  
nM = 1 times, our estimate of the total variance σTOT

2 will be Var(X) 
= 2.5 (Fig. 1b). This reflects cell and measurement variances  
(σC

2 + σM
2) but not animal variation; with only one animal sampled  

we have no way of knowing what the animal variance is. Thus 
Var(X) certainly underestimates σTOT

2, but we would not know by 

Figure 1 | Replicates do not contribute equally and independently to the 
measured variability, which can often underestimate the total variability in 
the system. (a) Three levels of replication (two biological, one technical) 
with animal, cell and measurement replicates normally distributed with 
a mean across animals of 10 and ratio of variances 1:2:0.5. Solid green 
(biological) and blue (technical) dots show how a measurement of the 
expression (X = 12) samples from all three sources of variation. Distribution 
s.d. is shown as horizontal lines. (b) Expression variance, Var(X), and 
variance of expression mean, Var(–X), computed across 10,000 simulations 
of nAnCnM = 48 measurements for unique combinations of the number of 
animals (nA = 1 to 48), cells per animal (nC = 1 to 48) and technical replicate 
measurements per cell (nM = 1 and 3). The ratio of Var(X) and Var(–X) is the 
effective sample size, n, which corresponds to the equivalent number of 
statistically independent measurements. Horizontal dashed lines correspond 
to biological and total variation. Error bars on Var(X) show s.d. from the 
10,000 simulated samples (nM = 1).
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2.4 5.5 11 15 19 25 37 48
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Table 1 | Replicate hierarchy in a hypothetical mouse single-cell 
gene expression RNA sequencing experiment

Replicate type
Replicate 
categorya

Animal
study
subjects

Colonies B

Strains B

Cohoused groups B

Gender B

Individuals B

Sample
preparation

Organs from sacrificed animals B

Methods for dissociating cells from tissue T

Dissociation runs from given tissue sample T

Individual cells B

RNA-seq library construction T

Sequencing Runs from the library of a given cell T

Reads from different transcript molecules Vb

Reads with unique molecular identifier (UMI) 
from a given transcript molecule

T

aReplicates are categorized as biological (B), technical (T) or of variable type (V). bSequence reads 
serve diverse purposes depending on the application and how reads are used in analysis.
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how much. Moreover, the uncertainty in Var(X) (error bar at nA = 1;  
Fig. 1b) is the error in σC

2 + σM
2 and not σTOT

2. At another extreme, 
if all our measurements are technical replicates (nA = nC = 1,  
nM = 48) we would find Var(X) = 0.5 (not represented in Fig. 1).  
This is only the technical variance; if we misinterpreted this as bio-
logical variation and used it for biological inference, we would have 
an excess of false positives. Be on the lookout: unusually small error 
bars on biological measurements may merely reflect measurement 
error, not biological variation. To obtain the best estimate of σTOT

2 we 
should  sample nC = 1 cells from nA = 48 animals because each of the 48 
measurements will independently sample each of the distributions in  
Figure 1a.

Our choice of the number of replicates also influences Var(–X), the 
precision in the expression mean. The optimal way to minimize this 
value is to collect data from as many animals as possible (nA = 48,  
nC = nM = 1), regardless of the ratios of variances in the system. This 
comes from the fact that nA contributes to decreasing each contribu-
tion to Var(–X), which is given by σA

2/nA + σC
2/nAnC + σM

2/nAnCnM. 
Although technical replicates allow us to determine σM

2, unless this 
is a quantity of interest, we should omit technical replicates and maxi-
mize nA. Of course, good blocking practice suggests that samples from 
the different animals and cells should be mixed across the sequencing 
runs to minimize the effect of any systematic run-to-run variability 
(not present in simulated data here).

The value in additional measurements can be estimated by the pro-
spective improvement in effective sample size. We have seen before 
that the variance in the mean of a random variable is related to its 
variance by Var(X) = nVar(–X). The ratio of Var(X) to Var(–X) can there-
fore be used as a measure of the equivalent number of independent 
samples. From Figure 1b, we can see that n = 48 only for nA = 48 
and drops to n = 25 for nA, nC = 12, 4 and is as low as about 2 for 
nA= 1. In other words, even though we may be collecting additional 
measurements they do not all contribute equally to an increase in the 
precision of the mean. This is because additional cell and technical 
replicates do not correspond to statistically independent values: tech-
nical replicates are derived from the same cell and the cell replicates 
from the same animal. If it is necessary to summarize expression 
variability at the level of the animals, then cells from a given animal 
are pseudoreplicates—statistically correlated in a way that is unique 
to that animal and not representative of the population under study. 
Not all replicates yield statistically independent measures, and treat-
ing them as if they do can erroneously lower the apparent uncertainty 
of a result. 

The number of replicates has a practical effect on inference errors in 
analysis of differences of means or variances. We illustrate this by enu-
merating inference errors in 10,000 simulated drug-treatment experi-
ments in which we vary the number of animals and cells (Fig. 2). We 
assume a 10% effect chance for two scenarios: a twofold increase in 
variance, σC

2, or a 10% increase in mean, μA, using the same values for 
other variances and 48 total measurements as in Figure 1. Applying 
the t-test, we show false discovery rate (FDR) and power for detecting 
these differences (Fig. 2). If we want to detect a difference in variation 
across cells, it is best to choose nA ≈  nC in our range. On the other 
hand, when we are interested in changes in mean expression across 
mice, it is better to sample as many mice as possible. In either case, 
increasing the number of measurements from 48 to 144 by taking 
three technical replicates (nM = 3) improves inference only slightly. 

Biological replicates are preferable to technical replicates for 
inference about the mean and variance of a biological population. 

(Fig. 2). For example, changing nA,nC,nM from 8,6,3 (where power 
is highest) to 12,12,1 doubles the power (0.43 to 0.88) in detecting 
a twofold change in variance. In the case of detecting a 10% differ-
ence in means, changing nA,nC,nM from 24,2,3 to 72,2,1 increases 
power by about 50% from 0.66 to 0.98. Practically, the cost dif-
ference between biological and technical replicates should be 
considered; this will affect the cost-benefit tradeoff of collecting 
additional replicates of one type versus the other. For example, if 
the cost units of animals to cells to measurements is 10:1:0.1 (bio-
logical replicates are likely more expensive than technical ones) 
then an experiment with nA,nC,nM of  12,12,1 is about twice as 
expensive as that with 8,6,3 (278 versus 142 cost units). However, 
power in detecting a change in variance is doubled as well, so the 
cost increase is commensurate with increase in efficiency. In the 
case of detecting differences in means, 72,2,1 is about three times 
as expensive as 24,2,3 (878 versus 302 cost units) but increases 
power only by 50%, making this a lower-value proposition.

Typically, biological variability is substantially greater than tech-
nical variability, so it is to our advantage to commit resources to 
sampling biologically relevant variables unless measures of techni-
cal variability are themselves of interest, in which case increasing 
the number of measurements per cell, nM, is valuable. 

Good experimental design practice includes planning for repli-
cation. First, identify the questions the experiment aims to answer. 
Next, determine the proportion of variability induced by each step 
to distribute the capacity for replication of the experiment across 
steps. Be aware of the potential for pseudoreplication and aim to 
design statistically independent replicates. 

As our capacity for higher-throughput assays increases, we should 
not be misled into thinking that more is always better. Clear thinking 
about experimental questions and sources of variability is still crucial 
to produce efficient study designs and valid statistical analyses. 
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Figure 2 | The number of replicates affects FDR and power of inferences on the 
difference in variances and means. Shown are power and FDR profiles of a test 
of difference in cell variances (left) and animal means (right) for 48 (nM = 1) 
or 144 (nM = 3) measurements using different combinations of nA and nC. 
Vertical arrows indicate change in FDR and power when technical replicates 
are replaced by biological replicates, as shown by nA,nC,nM, for the same 
number of measurements (144). Values generated from 10,000 simulations of 
a 10% chance of a treatment effect that increases cell variance 2σC

2 or animal 
mean 1.1 × μA. Samples were tested with two-sample t-test (sample size nA) 
at two-tailed α = 0.05. 
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