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Points of siGnifiCAnCE

this month

Nonparametric tests
nonparametric tests robustly compare skewed or ranked data.

We have seen that the t-test is robust with respect to assumptions 
about normality and equivariance1 and thus is widely applicable. 
There is another class of methods—nonparametric tests—more suit-
able for data that come from skewed distributions or have a discrete 
or ordinal scale. Nonparametric tests such as the sign and Wilcoxon 
rank-sum tests relax distribution assumptions and are therefore easier 
to justify, but they come at the cost of lower sensitivity owing to less 
information inherent in their assumptions. For small samples, the per-
formance of these tests is also constrained because their P values are 
only coarsely sampled and may have a large minimum. Both issues are 
mitigated by using larger samples. 

These tests work analogously to their parametric counterparts: a 
test statistic and its distribution under the null are used to assign sig-
nificance to observations. We compare in Figure 1 the one-sample 
t-test2 to a nonparametric equivalent, the sign test (though more 
sensitive and sophisticated variants exist), using a putative sample X 
whose source distribution we cannot readily identify (Fig. 1a). The 
null hypothesis of the sign test is that the sample median mX is equal 
to the proposed median, M = 0.4. The test uses the number of sample 
values larger than M as its test statistic, W—under the null we expect 
to see as many values below the median as above, with the exact prob-
ability given by the binomial distribution (Fig. 1c). The median is a 
more useful descriptor than the mean for asymmetric and otherwise 
irregular distributions. The sign test makes no assumptions about the 
distribution—only that sample values be independent. If we propose 
that the population median is M = 0.4 and we observe X, we find  
W = 5 (Fig. 1b). The chance of observing a value of W under the null 
that is at least as extreme (W ≤ 1 or W ≥ 5) is P = 0.22, using both tails 
of the binomial distribution (Fig. 1c). To limit the test to whether the 
median of X was biased towards values larger than M, we would con-
sider only the area for W ≥ 5 in the right tail to find P = 0.11.

The P value of 0.22 from the sign test is much higher than that 
from the t-test (P = 0.04), reflecting that the sign test is less sensitive. 
This is because it is not influenced by the actual distance between the 
sample values and M—it measures only ‘how many’ instead of ‘how 
much’. Consequently, it needs larger sample sizes or more supporting 
evidence than the t-test. For the example of X, to obtain P < 0.05 we 

would need to have all values larger than M (W = 6). Its large P values 
and straightforward application makes the sign test a useful diagnos-
tic. Take, for example, a hypothetical situation slightly different from 
that in Figure 1, where P > 0.05 is reported for the case where a treat-
ment has lowered blood pressure in 6 out of 6 subjects. You may think 
this P seems implausibly large, and you’d be right because the equiva-
lent scenario for the sign test (W = 6, n = 6) gives a two-tailed P = 0.03.

To compare two samples, the Wilcoxon rank-sum test is widely 
used and is sometimes referred to as the Mann-Whitney or Mann-
Whitney-Wilcoxon test. It tests whether the samples come from dis-
tributions with the same median. It doesn’t assume normality, but as 
a test of equality of medians, it requires both samples to come from 
distributions with the same shape. The Wilcoxon test is one of many 
methods that reduce the dynamic range of values by converting them 
to their ranks in the list of ordered values pooled from both samples 
(Fig. 2a). The test statistic, W, is the degree to which the sum of ranks 
is larger than the lowest possible in the sample with the lower ranks 
(Fig. 2b). We expect that a sample from a population with a smaller 
median will be converted to a set of smaller ranks.

Because there is a finite number (210) of combinations of rank-
ordering for X (nY  = 6) and Y (nY = 4), we can enumerate all outcomes 
of the test and explicitly construct the distribution of W (Fig. 2c) to 
assign a P value to W. The smallest value of W = 0 occurs when all 
values in one sample are smaller than those in the other. When they 
are all larger, the statistic reaches a maximum, W = nXnY = 24. For X 
versus Y, W = 3, and there are 14 of 210 test outcomes with W ≤ 3 
or W ≥ 21. Thus, PXY =14/210 = 0.067. For X versus Z, W = 2, and  
PXZ = 8/210 = 0.038. For cases in which both samples are larger than 
10, W is approximately normal, and we can obtain the P value from 
a z-test of (W – mW)/sW, where mW = n1(n1 + n2 + 1)/2 and sW = 
√(mWn2/6).

The ability to enumerate all outcomes of the test statistic makes 
calculating the P value straightforward (Figs. 1c and 2c), but 
there is an important consequence: there will be a minimum P 
value, Pmin. Depending on the size of samples, Pmin can be rela-
tively large. For comparisons of samples of size nX = 6 and nY = 4 
(Fig. 2a), Pmin = 1/210 = 0.005 for a one-tailed test, or 0.01 for a 
two-tailed test, corresponding to W = 0. Moreover, because there 
are only 25 distinct values of W (Fig. 2c), only two other two-
tailed P values are <0.05: P = 0.02 (W = 1) and P = 0.038 (W = 2).  
The next-largest P value (W = 3) is P = 0.07. Because there is no P 
with value 0.05, the test cannot be set to reject the null at a type I rate 
of 5%. Even if we test at a = 0.05, we will be rejecting the null at the 
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Figure 1 | A sample can be easily tested against a reference value using the 
sign test without any assumptions about the population distribution.  
(a) sample X (n = 6) is tested against a reference M = 0.4. sample mean  is 
shown with s.d. (sX) and s.e.m. error bars (s ). mx is sample median. (b) the 
t-statistic compares  to M in units of s.e.m. the sign test’s W is the number 
of sample values larger than M. (c) Under the null, t follows student’s 
t-distribution with five degrees of freedom, whereas W is described by the 
binomial with 6 trials and P = 0.5. two-tailed P values are shown.
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Figure 2 | Many nonparametric tests are based on ranks. (a) sample 
comparisons of X vs. Y and X vs. Z start with ranking pooled values and 
identifying the ranks in the smaller-sized sample (e.g., 1, 3, 4, 5 for Y; 1, 
2, 3, 6 for Z). Error bars show sample mean and s.d., and sample medians 
are shown by vertical dotted lines. (b) the Wilcoxon rank-sum test statistic 
W is the difference between the sum of ranks and the smallest possible 
observed sum. (c) for small sample sizes the exact distribution of W can 
be calculated. for samples of size (6, 4), there are only 210 different rank 
combinations corresponding to 25 distinct values of W.
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next lower P—for an effective type I error of 3.8%. We will see how this 
affects test performance for small samples further on. In fact, it may 
even be impossible to reach significance at a = 0.05 because there is a 
limited number of ways in which small samples can vary in the context 
of ranks, and no outcome of the test happens less than 5% of the time. 
For example, samples of size 4 and 3 offer only 35 arrangements of 
ranks and a two-tailed Pmin = 2/35 = 0.057. Contrast this to the t-test, 
which can produce any P value because the test statistic can take on 
an infinite number of values.

This has serious implications in multiple-testing scenarios discussed 
in the previous column3. Recall that when N tests are performed, 
multiple-testing corrections will scale the smallest P value to NP. In 
the same way as a test may never yield a significant result (Pmin > a),  
applying multiple-testing correction may also preclude it (NPmin > a). 
For example, making N = 6 comparisons on samples such as X and Y 
shown in Figure 2a (nX = 6, nY = 4) will never yield an adjusted P value 
lower than a = 0.05 because Pmin = 0.01 > a/N. To achieve two-tailed 
significance at a = 0.05 across N = 10, 100 or 1,000 tests, we require 
sample sizes that produce at least 400, 4,000 or 40,000 distinct rank 
combinations. This is achieved for sample pairs of size of (5, 6), (7, 8) 
and (9, 9), respectively.

The P values from the Wilcoxon test (PXY = 0.07, PXZ = 0.04) in 
Figure 2a appear to be in conflict with those obtained from the 
t-test (PXY = 0.04, PXZ = 0.06). The two methods tell us contradic-
tory information—or do they? As mentioned, the Wilcoxon test 
concerns the median, whereas the t-test concerns the mean. For 
asymmetric distributions, these values can be quite different, and it 
is conceivable that the medians are the same but the means are dif-
ferent. The t-test does not identify the difference in means of X and 
Z as significant because the standard deviation, sZ, is relatively large 
owing to the influence of the sample’s largest value (0.81). Because 
the t-test reacts to any change in any sample value, the presence of 
outliers can easily influence its outcome when samples are small. 
For example, simply increasing the largest value in X (1.00) by 0.3 
will increase sX from 0.28 to 0.35 and result in a PXY value that is 
no longer significant at a = 0.05. This change does not alter the 
Wilcoxon P value because the rank scheme remains unaltered. This 
insensitivity to changes in the data—outliers and typical effects 
alike—reduces the sensitivity of rank methods.

The fact that the output of a rank test is driven by the probability 
that a value drawn from distribution A will be smaller (or larger) 
than one drawn from B without regard to their absolute difference 
has an interesting consequence: we cannot use this probability 
(pairwise preferences, in general) to impose an order on distri-
butions. Consider a case of three equally prevalent diseases for 
which treatment A has cure times of 2, 2 and 5 days for the three 
diseases, and treatment B has 1, 4 and 4. Without treatment, each 
disease requires 3 days to cure—let’s call this control C. Treatment 
A is better than C for the first two diseases but not the third, and 
treatment B is better only for the first. Can we determine which 
of the three options (A, B, C) is better? If we try to answer this 
using the probability of observing a shorter time to cure, we find  
P(A < C) = 67% and P(C < B) = 67% but also that P(B < A) = 
56%—a rock-paper-scissors scenario.

The question about which test to use does not have an unquali-
fied answer—both have limitations. To illustrate how the t- and 
Wilcoxon tests might perform in a practical setting, we compared 
their false positive rate (FPR), false discovery rate (FDR) and power 
at a = 0.05 for different sampling distributions and sample sizes  
(n = 5 and 25) in the presence and absence of an effect (Fig. 3). 
At n = 5, Wilcoxon FPR = 0.032 < a because this is the largest  
P value it can produce smaller than a, not because the test inher-
ently performs better. We can always reach this FPR with the t-test 
by setting a = 0.032, where we’ll find that it will still have slightly 
higher power than a Wilcoxon test that rejects at this rate. At n = 5, 
Wilcoxon performs better for discrete sampling—the power (0.43) 
is essentially the same as the t-test’s (0.46), but the FDR is lower. 
When both tests are applied at a = 0.032, Wilcoxon power (0.43) is 
slightly higher than t-test power (0.39). The differences between the 
tests for n = 25 diminishes because the number of arrangements of 
ranks is extremely large and the normal approximation to sample 
means is more accurate. However, one case stands out: in the pres-
ence of skew (e.g., exponential distribution), Wilcoxon power is 
much higher than that of the t-test, particularly for continuous sam-
pling. This is because the majority of values are tightly spaced and 
ranks are more sensitive to small shifts. Skew affects t-test FPR and 
power in a complex way, depending on whether one- or two-tailed 
tests are performed and the direction of the skew relative to the 
direction of the population shift that is being studied4.

Nonparametric methods represent a more cautious approach 
and remove the burden of assumptions about the distribution. 
They apply naturally to data that are already in the form of ranks 
or degree of preference, for which numerical differences can-
not be interpreted. Their power is generally lower, especially in  
multiple-testing scenarios. However, when data are very skewed, 
rank methods reach higher power and are a better choice than the 
t-test.
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Figure 3 | the Wilcoxon rank-sum test can outperform the t-test in the 
presence of discrete sampling or skew. Data were sampled from three 
common analytical distributions with m = 1 (dotted lines) and s = 1 (gray 
bars, m ± s). Discrete sampling was simulated by rounding values to the 
nearest integer. the fPR, fDR and power of Wilcoxon tests (black lines) 
and t-tests (colored bars) for 100,000 sample pairs for each combination 
of sample size (n = 5 and 25), effect chance (0 and 10%) and sampling 
method. in the absence of an effect, both sample values were drawn from 
a given distribution type with m = 1. With effect, the distribution for the 
second sample was shifted by d (d = 1.4 for n = 5; d = 0.57 for n = 25). the 
effect size was chosen to yield 50% power for the t-test in the normal noise 
scenario. two-tailed P at a = 0.05.
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