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POINTS OF SIGNIFICANCE

Interpreting P values
A P value measures a sample’s compatibility with a 
hypothesis, not the truth of the hypothesis.

Although P values are convenient and popular summaries of exper-
imental results, we can be led astray if we consider them as our only 
metric1. Even in the ideal case of a rigorously designed randomized 
study fit to a predetermined model, P values still need to be supple-
mented with other information to avoid misinterpretation.

A P value is a probability statement about the observed sample in 
the context of a hypothesis, not about the hypotheses being tested. 
For example, suppose we wish to know whether disease affects 
the level of a biomarker. The P value of a comparison of the mean 
biomarker levels in healthy versus diseased samples would be the 
probability that a difference in means at least as large as the one 
observed can be generated from random samples if the disease does 
not affect the mean biomarker level. It is not the probability of the 
biomarker-level means in the two samples being equal—they either 
are or are not equal.

However, this relationship between P values and inference about 
hypotheses is a critical point—interpretation of statistical analysis 
depends on it. It is one of the key themes in the American Statistical 
Association’s statement on statistical significance and P values2, 
published to mitigate widespread misuse and misinterpretation of 
P values. This relationship is discussed in some of the 18 short com-
mentaries that accompany the statement, from which three main 
ideas for using, interpreting and reporting P values emerge: the use 
of more stringent P value cutoffs supported by Bayesian analysis, 
use of the observed P value to estimate false discovery rate (FDR), 
and the combination of P values and effect sizes to create more 
informative confidence intervals. The first two of these ideas are 
currently most useful as guidelines for assessing how strongly the 
data support null versus alternative hypotheses, whereas the third 
could be used to assess how strongly the data support parameter 
values in the confidence interval. However, like P values, these 
methods will be biased toward the alternative hypothesis when 
used with a P value selected from the most significant of multiple 
tests or models1.

To illustrate these three ideas, let’s expand on the biomarker exam-
ple above with the null hypothesis that disease does not influence 
the biomarker level. For samples, we’ll use n = 10 individuals, ran-
domly chosen from each of the unaffected and affected populations, 
assumed to be normally distributed with σ2 = 1. At this sample size, 
a two-sample t-test has 80% power to reject the null at significance  
a = 0.05 when the effect size is 1.32 (Fig. 1a). Suppose that we 
observe a difference in sample means of 1.2 and that our samples 
have a pooled s.d. of sp = 1.1. These give us t = 1.2/(sp√(2/n)) = 2.44 
with d.f. = 2(n – 1) = 18 and a P value of 0.025.

Once a P value has been computed, it is useful to assess the 
strength of evidence of the truth or falsehood of the null hypoth-
esis. Here we can look to Bayesian analysis for ways to make this 
connection3, where decisions about statistical significance can be 
based on the Bayes factor, B, which is the ratio of average likeli-
hoods under the alternative and null hypotheses. However, using 

Bayesian analysis adds an element of subjectivity because it requires 
the specification of a prior distribution for the model parameters 
under both hypotheses.

Benjamin and Berger, in their discussion in ref. 2, note that the P 
value can be used to compute an upper bound for the Bayes factor, . 
The bound does not require the specification of a prior and holds for 
many reasonable choices of priors. For example,  = 10 means that 
the alternative hypothesis is at most ten times more likely to be true 
than the null.

Because it quantifies the extent to which the alternative hypothesis 
is more likely, the Bayes factor can be used for significance testing. 
Decision boundaries for the Bayes factor are less prescriptive than 
those for P values, with descriptors such as “anectodal,” “substantial,” 
“strong” and “decisive” often used for cutoff values. The exact terms 
and corresponding values vary across the literature, and their inter-
pretation requires active consideration on the part of the researcher4. 
A Bayes factor of 20 or more is generally considered to be strong evi-
dence for the alternative hypothesis.

The Benjamin and Berger bound is given by  ≤ –1/(e P ln(P)) 
for a given P value5 (Fig. 1b). For example, when we reject the null 
at P < a = 0.05, we do so when the alternative hypothesis is at most  

 ≤ 2.5 times more likely than the null! This significance boundary is 
considered by many Bayesians to be extremely weak to nonexistent 
evidence against the null hypothesis.

For our biomarker example, we found P = 0.025 and thus conclude 
that the alternative hypothesis that disease affects the biomarker level 
is at most  ≤ 3.9 times more likely than the null. If we insist on  

 > 20, which corresponds to ‘strong’ evidence for the alternative, we 
need P < 0.0032 (Fig. 1b). Johnson, in a discussion in ref. 2, suggests 
testing at P < a = 0.005 (  > 14) for statistical significance (Fig. 1b). 
Notice that the computation for  does not use the power of the test. 
If we compute power using the same effect size of 1.32 but reject the 
null at a < 0.005 (  > 14), the power is only 43% (Fig. 1c). To achieve 
80% power at this cutoff, we would need a sample size of n = 18.

Altman (this author), in a discussion in ref. 2, proposes to supple-
ment P values with an estimate of the FDR by using plug-in values 
to account for both the power of the test and the prior evidence in 

Figure 1 | Using a Bayesian heuristic to interpret the P value. (a) Power 
drops at more stringent P value cutoffs a. The curve is based on a two-
sample t-test with n = 10 and an effect size of 1.32. (b) The Benjamin and 
Berger bound calibrates the P value to probability statements about the 
hypothesis. At P = 0.05, the bound suggests that our alternative hypothesis 
is at most 2.5 times more likely than the null (black dashed line). Also shown 
are the conventional Bayesian B– = 20 (blue dashed line; P = 0.0032) cutoff 
and B– = 14 (orange dashed line; P = 0.005), suggested by Johnson in ref. 2. 
(c) Use of the more stringent Benjamin and Berger bounds in b reduces the 
power of the test, because now testing is performed at a < 0.05. For B– = 14 
(orange dashed line; a = 0.005), the power is only 43%. The blue and orange 
dashed lines show the same bounds as in b. In all panels, black dotted lines 
are present to help the reader locate values discussed in the text.
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with 80% power, we require p0 ≤ 0.62, which is fairly strong prior 
evidence for the alternative hypothesis. For our biomarker exam-
ple, this might be reasonable if studies in other labs or biological 
arguments suggest that this biomarker is associated with disease 
status, but it is unreasonable if multiple models were fitted or if 
this is the most significant of multiple biomarkers tested with little 
biological guidance.

Many investigators and journals advocate supplementing P val-
ues with confidence intervals, which provide a range of effect sizes 
compatible with the observations. Mayo, in a discussion in ref. 2, 
suggests considering the P value for a range of hypotheses. We dem-
onstrate this approach in Figure 2b, which shows the P values of 
other levels of the biomarker in comparison to one that is observed. 
The 95% confidence interval, which is (0.17, 2.23) for this example, 
is the range of levels that are not significantly different at a = 0.05 
from the observed level of 1.2.

As a final comment, we stress that P values are random vari-
ables—that is, random draws of data will yield a distribution for 
the P value1. When the data are continuous and the null hypoth-
esis is true, the P value is uniformly distributed on (0,1), with a 
mean of 0.5 and s.d. of 1/√12 ≈ 0.29 (ref. 1). This means that the P 
value is very variable from sample to sample, and this variability is 
not a function of the sample size or the power of the study. When 
the alternative hypothesis is true, the variability decreases as the 
power increases, but the P value is still random. We show this in 
Figure 2c, in which we simulate 100,000 sample pairs for each 
mean biomarker level.

P values can provide a useful assessment of whether data 
observed in an experiment are compatible with a null hypothesis. 
However, the proper use of P values requires that they be properly 
computed (with appropriate attention to the sampling design), 
reported only for analyses for which the analysis pipeline was spec-
ified ahead of time, and appropriately adjusted for multiple testing 
when present. Interpretation of P values can be greatly assisted by 
accompanying heuristics, such as those based on the Bayes fac-
tor or the FDR, which translate the P value into a more intuitive 
quantity. Finally, variability of the P value from different samples 
points to the need to bring many sources of evidence to the table 
before drawing scientific conclusions.
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favor of the null hypothesis. In high-throughput multiple-testing 
problems, the FDR is the expected proportion of the rejected null 
hypotheses that consists of false rejections. If some proportion p0 of 
the tests are truly null and we reject at P < a, we expect ap0 of the 
tests to be false rejections. Given that 1 – p0 of the tests are non-null, 
then with power b we reject b(1 – p0) of these tests. So, a reasonable 
estimate of the FDR is the ratio of expected false rejections to all 
expected rejections, eFDR = ap0/(ap0 + b(1 – p0)).

For low-throughput testing, Altman uses the heuristic that p0 is 
the probability that the null hypothesis is true as based on prior evi-
dence. She suggests using p0 = 0.5 or 0.75 for the primary hypotheses 
or secondary hypotheses of a research proposal, respectively, and p0 
= 0.95 for hypotheses formulated after exploration of the data (post 
hoc tests) (Fig. 2a). In the high-throughput scenario, p0 can be esti-
mated from the data, but for low-throughput experiments Altman 
uses the Bayesian argument that p0 should be based on the prior 
odds that the investigator would be willing to put on the truth of the 
null hypothesis. She then replaces a with the observed P value, and 
b with the planned power of the study.

For our example, using P = 0.025 and 80% power gives eFDR = 
0.03, 0.09 and 0.38 for primary, secondary and post hoc tests, respec-
tively (Fig. 2a). In other words, for a primary hypothesis in our 
study, we estimate that only 3% of the tests where we reject the null 
at this level of P are actually false discoveries, but if we tested only 
after exploring the data, we would expect 38% of the discoveries to 
be false.

Altman’s ‘rule-of-thumb’ values for p0 are arbitrary. A simple way 
to avoid this is to determine the value of p0 required to achieve a 
given eFDR. For example, to achieve eFDR = 0.05 for our example 

Figure 2 | Interpretation of the P value with heuristics based on the false 
discovery rate (FDR) and by examination of P values across a range of 
hypotheses. (a) The relationship between the estimated FDR (eFDR) and the 
proportion of tests expected to be null, p0, when testing at a = 0.05. Dashed 
lines indicate Altman’s proposals2 for p0. (b) The profile of P values for our 
biomarker example (n = 10, sp = 1.1). The dashed line at P = 0.05 cuts the 
curve at the boundaries of the 95% confidence interval (0.17, 2.23), shown 
as an error bar. (c) P value percentiles (shown by contour lines) and 95% 
range (gray shading) expected from a two-sample t-test as effect size is 
increased. At each effect size d, data were simulated from 100,000 normally 
distributed samples (n = 10 per sample) with means 0 and d, respectively, 
and σ2 = 1. The fraction of P values smaller than a is the power of the test—
for example, 80% (blue contour) are smaller than 0.05 for d = 1.32 (blue 
dashed line). When d = 0, P values are randomly uniformly distributed.
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