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POINTS OF SIGNIFICANCE

Importance of being 
uncertain
Statistics does not tell us whether we are right. It tells 
us the chances of being wrong.

When an experiment is reproduced we almost never obtain exactly 
the same results. Instead, repeated measurements span a range of val-
ues because of biological variability and precision limits of measuring 
equipment. But if results are different each time, how do we determine 
whether a measurement is compatible with our hypothesis? In “the 
great tragedy of Science—the slaying of a beautiful hypothesis by an 
ugly fact”1, how is ‘ugliness’ measured?

Statistics helps us answer this question. It gives us a way to quanti-
tatively model the role of chance in our experiments and to represent 
data not as precise measurements but as estimates with error. It also 
tells us how error in input values propagates through calculations. 
The practical application of this theoretical framework is to associate 
uncertainty to the outcome of experiments and to assign confidence 
levels to statements that generalize beyond observations.

Although many fundamental concepts in statistics can be under-
stood intuitively, as natural pattern-seekers we must recognize the 
limits of our intuition when thinking about chance and probability. 
The Monty Hall problem is a classic example of how the wrong 
answer can appear far too quickly and too credibly before our eyes. 
A contestant is given a choice of three doors, only one leading to 
a prize. After selecting a door (e.g., door 1), the host opens one of 
the other two doors that does not lead to a prize (e.g., door 2) and 
gives the contestant the option to switch their pick of doors (e.g., 
door 3). The vexing question is whether it is in the contestant’s 
best interest to switch. The answer is yes, but you would be in good 
company if you thought otherwise. When a solution was published 
in Parade magazine, thousands of readers (many with PhDs) wrote 
in that the answer was wrong2. Comments varied from “You made 
a mistake, but look at the positive side. If all those PhDs were 
wrong, the country would be in some very serious trouble” to “I 
must admit I doubted you until my fifth grade math class proved 
you right”2.

The Points of Significance column will help you move beyond an 
intuitive understanding of fundamental statistics relevant to your 
work. Its aim will be to address the observation that “approximate-
ly half the articles published in medical journals that use statistical 
methods use them incorrectly”3. Our presentation will be practical 
and cogent, with focus on foundational concepts, practical tips and 
common misconceptions4. A spreadsheet will often accompany each 
column to demonstrate the calculations (Supplementary Table 1). 
We will not exhaust you with mathematics.

Statistics can be broadly divided into two categories: descriptive and 
inferential. The first summarizes the main features of a data set with 
measures such as the mean and standard deviation (s.d.). The second 
generalizes from observed data to the world at large. Underpinning 
both are the concepts of sampling and estimation, which address the 
process of collecting data and quantifying the uncertainty in these 
generalizations.

To discuss sampling, we need to introduce the concept of a popula-
tion, which is the set of entities about which we make inferences. The 
frequency histogram of all possible values of an experimental variable 
is called the population distribution (Fig. 1a). We are typically inter-
ested in inferring the mean (+) and the s.d. (m) of a population, two 
measures that characterize its location and spread (Fig. 1b). The mean 
is calculated as the arithmetic average of values and can be unduly 
influenced by extreme values. The median is a more robust measure 

of location and more suitable for distributions that are skewed or oth-
erwise irregularly shaped. The s.d. is calculated based on the square 
of the distance of each value from the mean. It often appears as the 
variance (m2) because its properties are mathematically easier to for-
mulate. The s.d. is not an intuitive measure, and rules of thumb help us 
in its interpretation. For example, for a normal distribution, 39%, 68%, 
95% and 99.7% of values fall within ± 0.5m, ± 1m, ± 2m and ± 3m. These 
cutoffs do not apply to populations that are not approximately normal, 
whose spread is easier to interpret using the interquartile range.

Fiscal and practical constraints limit our access to the popula-
tion: we cannot directly measure its mean (+) and s.d. (m). The best 
we can do is estimate them using our collected data through the 
process of sampling (Fig. 2). Even if the population is limited to 
a narrow range of values, such as between 0 and 30 (Fig. 2a), the 

random nature of sampling will impart uncertainty to our estimate 
of its shape. Samples are sets of data drawn from the population  
(Fig. 2b), characterized by the number of data points n, usually 
denoted by X and indexed by a numerical subscript (X1). Larger 
samples approximate the population better.

To maintain validity, the sample must be representative of the popu-
lation. One way of achieving this is with a simple random sample, 
where all values in the population have an equal chance of being 
selected at each stage of the sampling process. Representative does 
not mean that the sample is a miniature replica of the population. In 
general, a sample will not resemble the population unless n is very 
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Figure 1 | The mean and s.d. are commonly used to characterize the 
location and spread of a distribution. When referring to a population, these 
measures are denoted by the symbols + and m.

Figure 2 | Population parameters are estimated by sampling. (a) Frequency 
histogram of the values in a population. (b) Three representative samples 
taken from the population in a, with their sample means. (c) Frequency 
histogram of means of all possible samples of size n = 5 taken from the 
population in a.
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size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside + ± m (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/3n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).
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large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus m).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, +X–   and mX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
mX–  , is quite a bit smaller than that of the population, m .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by +X–   = + and mX–   = m/3n. The terms in the second relationship are 
often confused: mX–   is the spread of sample means, and m is the spread 
of the underlying population. As we increase n, mX–   will decrease (our 
samples will have more similar means) but m will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate mX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 
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Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.
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Figure 4 | The mean ( 
–
X   ), s.d. (s) and s.e.m. of three samples of increasing 

size drawn from the distribution in Figure 2a. As n is increased, 
–
X   and s more 

closely approximate + and m. The s.e.m. (s/3n) is an estimate of mX–  and 
measures how well the sample mean approximates the population mean.
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