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calculations are easily computed with software; typically inputs are 
the difference in means (Δμ), standard deviation estimate (σ), α 
and the number of tails (we recommend always using two-tailed 
calculations).

Based on the design in Figure 1a, we show the simulated samples 
means and their 95% confidence interval (CI) in Figure 1b. The 95% 
CI captures the mean of the population 95% of the time; we recom-
mend using it to report precision. Our results show a significant dif-
ference between B and control (referred to as B/C, P = 0.009) but not 
for A/C (P = 0.18). Paradoxically, testing B/A does not return a sig-
nificant outcome (P = 0.15). Whenever we perform more than one 
test we should adjust the P values2. As we only have three tests, the 
adjusted B/C P value is still significant, Pʹ =  3P = 0.028. Although 
commonly used, the format used in Figure 1b is inappropriate for 
reporting our results: sample means, their uncertainty and P values 
alone do not present the full picture.

A more complete presentation of the results (Fig. 1c) combines 
the magnitude with uncertainty (as CI) in the difference in means. 
The effect size, d, defined as the difference in means in units of 
pooled standard deviation, expresses this combination of mea-
surement and precision in a single value. Data in Figure 1c also 
explain better that the difference between a significant result (B/C, 
P = 0.009) and a nonsignificant result (A/C, P = 0.18) is not always 
significant (B/A, P = 0.15)3. Significance itself is a hard boundary at 
P = α, and two arbitrarily close results may straddle it. Thus, neither 
significance itself nor differences in significance status should ever 
be used to conclude anything about the magnitude of the underlying 
differences, which may be very small and not biologically relevant. 

CIs explicitly show how close we are to making a positive infer-
ence and help assess the benefit of collecting more data. For example, 
the CIs of A/C and B/C closely overlap, which suggests that at our 
sample size we cannot reliably distinguish between the response to 
A and B (Fig. 1c). Furthermore, given that the CI of A/C just barely 
crosses zero, it is possible that A has a real effect that our test failed 
to detect. More information about our ability to detect an effect can 
be obtained from a post hoc power analysis, which assumes that the 
observed effect is the same as the real effect (normally unknown), 
and uses the observed difference in means and pooled variance. For 
A/C, the difference in means is 0.48 and the pooled s.d. (sp) = 1.03, 
which yields a post hoc power of 27%; we have little power to detect 
this difference. Other than increasing sample size, how could we 
improve our chances of detecting the effect of A? 

Our ability to detect the effect of A is limited by variability in the  
difference between A and C, which has two random components. If 
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Designing comparative 
experiments
Good experimental designs limit the impact of 
variability and reduce sample-size requirements.

In a typical experiment, the effect of different conditions on a bio-
logical system is compared. Experimental design is used to iden-
tify data-collection schemes that achieve sensitivity and specificity 
requirements despite biological and technical variability, while keep-
ing time and resource costs low. In the next series of columns we will 
use statistical concepts introduced so far and discuss design, analysis 
and reporting in common experimental scenarios.  

In experimental design, the researcher-controlled independent 
variables whose effects are being studied (e.g., growth medium, drug 
and exposure to light) are called factors. A level is a subdivision of 
the factor and measures the type (if categorical) or amount (if con-
tinuous) of the factor. The goal of the design is to determine the 
effect and interplay of the factors on the response variable (e.g., cell 
size). An experiment that considers all combinations of N factors, 
each with ni levels, is a factorial design of type n1 × n2 × … × nN. 
For example, a 3 × 4 design has two factors with three and four lev-
els each and examines all 12 combinations of factor levels. We will 
review statistical methods in the context of a simple experiment to 
introduce concepts that apply to more complex designs.

Suppose that we wish to measure the cellular response to two dif-
ferent treatments, A and B, measured by fluorescence of an aliquot 
of cells. This is a single factor (treatment) design with three levels 
(untreated, A and B). We will assume that the fluorescence (in arbi-
trary units) of an aliquot of untreated cells has a normal distribu-
tion with μ = 10 and that real effect sizes of treatments A and B are 
dA = 0.6 and dB = 1 (A increases response by 6% to 10.6 and B by 
10% to 11). To simulate variability owing to biological variation and 
measurement uncertainty (e.g., in the number of cells in an aliquot), 
we will use σ = 1 for the distributions. For all tests and calculations 
we use α = 0.05.

We start by assigning samples of cell aliquots to each level  
(Fig. 1a). To improve the precision (and power) in measuring the 
mean of the response, more than one aliquot is needed1. One sample 
will be a control (considered a level) to establish the baseline response, 
and capture biological and technical variability. The other two sam-
ples will be used to measure response to each treatment. Before we 
can carry out the experiment, we need to decide on the sample size.

We can fall back to our discussion about power1 to suggest n. How 
large an effect size (d) do we wish to detect and at what sensitivity? 
Arbitrarily small effects can be detected with large enough sample 
size, but this makes for a very expensive experiment. We will need to 
balance our decision based on what we consider to be a biologically 
meaningful response and the resources at our disposal. If we are 
satisfied with an 80% chance (the lowest power we should accept) 
of detecting a 10% change in response, which corresponds to the 
real effect of treatment B (dB = 1), the two-sample t-test requires 
n = 17. At this n value, the power to detect dA = 0.6 is 40%. Power 

Figure 1 | Design and reporting of a single-factor experiment with three 
levels using a two-sample t-test. (a) Two treated samples (A and B) with 
n = 17 are compared to a control (C) with n = 17 and to each other using 
two-sample t-tests. (b) Simulated means and P values for samples in a. 
Values are drawn from normal populations with σ = 1 and mean response of 
10 (C), 10.6 (A) and 11 (B). (c) The preferred reporting method of results 
shown in b, illustrating difference in means with CIs, P values and effect 
size, d. All error bars show 95% CI.
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the same as the variance of the unpaired. In contrast, if there is no 
variation in measurements on the same aliquot except for the treat-
ment effect (σwit = 0), we have perfect correlation (ρ = 1). Now, the 
difference measurement derived from the same aliquot removes all 
the noise; in fact, a single pair of aliquots suffices for an exact infer-
ence. Practically, both sources of variation are present, and it is their 
relative size—reflected in ρ—that determines the benefit of using 
the paired t-test. 

We can see the improved sensitivity of the paired design (Fig. 3a)  
in decreased P values for the effects of A and B (Fig. 3b versus Fig. 
1b). With the between-subject variance mitigated, we now detect an 
effect for A (P = 0.013) and an even lower P value for B (P = 0.0002) 
(Fig. 3b). Testing the difference between ΔA and ΔB requires the 
two-sample t-test because we are testing different aliquots, and this 
still does not produce a significant result (P = 0.18). When reporting 
paired-test results, sample means (Fig. 3b) should never be shown; 
instead, the mean difference and confidence interval should be 
shown (Fig. 3c). The reason for this comes from our discussion 
above: the benefit of pairing comes from reduced variance because 
ρ > 0, something that cannot be gleaned from Figure 3b. We illus-
trate this in Figure 3c with two different sample simulations with 
same sample mean and variance but different correlation, achieved 
by changing the relative amount of σbet

2 and σwit
2. When the com-

ponent of biological variance is increased, ρ is increased from 0.5 to 
0.8, total variance in difference in means drops and the test becomes 
more sensitive, reflected by the narrower CIs. We are now more 
certain that A has a real effect and have more reason to believe 
that the effects of A and B are different, evidenced by the lower  
P value for ΔB/ΔA from the two-sample t-test (0.06 versus 0.18; 
Fig. 3c). As before, P values should be adjusted with multiple-test 
correction. 

The paired design is a more efficient experiment. Fewer aliquots 
are needed: 34 instead of 51, although now 68 fluorescence mea-
surements need to be taken instead of 51. If we assume σwit  =  σbet

 

(ρ = 0.5; Fig. 3c), we can expect the paired design to have a power 
of 97%. This power increase is highly contingent on the value of ρ. 
If σwit is appreciably larger than σbet (i.e., ρ is small), the power of 
the paired test can be lower than for the two-sample variant. This is 
because total variance remains relatively unchanged (2σ2(1 – ρ) ≈  
2σ2) while the critical value of the test statistic can be markedly larg-
er (particularly for small samples) because the number of degrees 
of freedom is now n – 1 instead of 2(n – 1). If the ratio of σbet

2 to 
σwit

2 is 1:4 (ρ = 0.2), the paired test power drops from 97% to 86%.
To analyze experimental designs that have more than two levels, 

or additional factors, a method called analysis of variance is used. 
This generalizes the t-test for comparing three or more levels while 
maintaining better power than comparing all sets of two levels.  
Experiments with two or more levels will be our next topic.
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we measure the same aliquot twice, we expect variability owing to 
technical variation inherent in our laboratory equipment and vari-
ability of the sample over time (Fig. 2a). This is called within-subject 
variation, σwit. If we measure two different aliquots with the same 
factor level, we also expect biological variation, called between- 
subject variation, σbet, in addition to the technical variation (Fig. 2b).  
Typically there is more biological than technical variability 
(σbet > σwit). In an unpaired design, the use of different aliquots adds 
both σwit and σbet to the measured difference (Fig. 2c). In a paired 
design, which uses the paired t-test4, the same aliquot is used and the 
impact of biological variation (σbet) is mitigated (Fig. 2c). If differ-
ences in aliquots (σbet) are appreciable, variance is markedly reduced 
(to within-subject variation) and the paired test has higher power. 

The link between σbet and σwit can be illustrated by an experiment 
to evaluate a weight-loss diet in which a control group eats normally 
and a treatment group follows the diet. A comparison of the mean 
weight after a month is confounded by the initial weights of the sub-
jects in each group. If instead we focus on the change in weight, we 
remove much of the subject variability owing to the initial weight.

If we write the total variance as σ2 = σwit
2 + σbet

2, then the vari-
ance of the observed quantity in Figure 2c is 2σ2 for the unpaired 
design but 2σ2(1 – ρ) for the paired design, where ρ = σbet

2/σ2 is 
the correlation coefficient (intraclass correlation). The relative dif-
ference is captured by ρ of two measurements on the same aliquot, 
which must be included because the measurements are no longer 
independent. If we ignore ρ in our analysis, we will overestimate 
the variance and obtain overly conservative P values and CIs. In the 
case where there is no additional variation between aliquots, there 
is no benefit to using the same aliquot: measurements on the same 
aliquot are uncorrelated (ρ = 0) and variance of the paired test is 

Figure 3 | Design and reporting for a paired, single-factor experiment.  
(a) The same n = 17 sample is used to measure the difference between 
treatment and background (ΔA = Aafter – Abefore, ΔB = Bafter – Bbefore), analyzed 
with the paired t-test. Two-sample t-test is used to compare the difference 
between responses (ΔB versus ΔA). (b) Simulated sample means and P values 
for measurements and comparisons in a. (c) Mean difference, CIs and P values 
for two variance scenarios, σbet

2/σwit
2 of 1 and 4, corresponding to ρ of 0.5 

and 0.8. Total variance was fixed: σbet
2 + σwit

2 = 1. All error bars show 95% CI.
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Figure 2 | Sources of variability, conceptualized as circles with 
measurements (xi, yi) from different aliquots (x,y) randomly sampled within 
them. (a) Limits of measurement and technical precision contribute to σwit 
(gray circle) observed when the same aliquot is measured more than once. 
This variability is assumed to be the same in the untreated and treated 
condition, with effect d on aliquot x and y. (b) Biological variation gives 
rise to σbet (green circle). (c) Paired design uses the same aliquot for both 
measurements, mitigating between-subject variation.
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