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POINTS OF SIGNIFICANCE

Comparing samples—
part I
Robustly comparing pairs of independent or related 
samples requires different approaches to the t-test.

Among the most common types of experiments are comparative stud-
ies that contrast outcomes under different conditions such as male 
versus female, placebo versus drug, or before versus after treatment. 
The analysis of these experiments calls for methods to quantitatively 
compare samples to judge whether differences in data support the 
existence of an effect in the populations they represent. This analysis is 
straightforward and robust when independent samples are compared; 
but researchers must often compare related samples, and this requires 
a different approach. We discuss both situations.

We’ll begin with the simple scenario of comparing two conditions. 
This case is important to understand because it serves as a foundation 
for more complex designs with multiple simultaneous comparisons. 
For example, we may wish to contrast several treatments, track the 
evolution of an effect over time or consider combinations of treat-
ments and subjects (such as different drugs on different genotypes).

We will want to assess the size of observed differences relative 
to the uncertainty in the samples. By uncertainty, we mean the 
spread as measured by the s.d., written as m and s when refer-
ring to the population and sample estimate, respectively. It is 
more convenient to model uncertainty using variance, which is 
the square of the s.d. and denoted by Var() (or m�2) and s2 for 
the population and sample, respectively. Using this notation, the 
relationship between the uncertainty in the population of sample 
means and that of the population is Var( ) = Var(X)/n for samples 

of size n. The equivalent statement for sample data is s 2 = sX
2/n, 

where s  is the s.e.m. and sX is the sample s.d.
Recall our example of the one-sample t-test in which the expression 

of a protein was compared to a reference value1. Our goal will be to 
extend this approach, in which only one quantity had uncertainty, to 
accommodate a comparison of two samples, in which both quantities 
now have uncertainty. Figure 1a encapsulates the relevant distribu-
tions for the one-sample scenario. We assumed that our sample X was 
drawn from a population, and we used the sample mean  to estimate 
the population mean. We defined the t-statistic (t) as the difference 
between the sample mean and the reference value, +, in units of uncer-
tainty in the mean, given by the s.e.m., and showed that t follows the 
Student’s t-distribution1 when the reference value is the mean of the 
population. We computed the probability that the difference between 
the sample and reference was due to the uncertainty in the sample 
mean. When this probability was less than a fixed type I error level, _, 
we concluded that the population mean differed from +.

Let’s now replace the reference with a sample Y of size m (Fig. 1b). 
Because the sample means are an estimate of the population means, 
the difference  –  serves as our estimate of the difference in the 
mean of the populations. Of course, populations can vary not only 
in their means, but for now we’ll focus on this parameter. Just as in 
the one-sample case, we want to evaluate the difference in units of 
its uncertainty. The additional uncertainty introduced by replacing 
the reference with Y will need to be taken into account. To estimate 
the uncertainty in  – , we can turn to a useful result in probability 
theory.

For any two uncorrelated random quantities, X and Y, we have the 
following relationship: Var(X – Y) = Var(X) + Var(Y). In other words, 
the expected uncertainty in a difference of values is the sum of indi-
vidual uncertainties. If we have reason to believe that the variances of 
the two populations are about the same, it is customary to use the aver-
age of sample variances as an estimate of both population variances. 
This is called the pooled variance, sp

2. If the sample sizes are equal, it is 
computed by a simple average, sp

2 = (sX
2 + sY

2)/2. If not, it is an average 
weighted by n – 1 and m – 1, respectively. Using the pooled variance 
and applying the addition of variances rule to the variance of sample 
means gives Var(  – ) = sp

2/n + sp
2/m. The uncertainty in  –  is 

given by its s.d., which is the square root of this quantity.
To illustrate with a concrete example, we have reproduced the pro-

tein expression one-sample t-test example1 in Figure 2a and contrast 
it to its two-sample equivalent in Figure 2b. We have adjusted sample 
values slightly to better illustrate the difference between these two 
tests. For the one-sample case, we find t = 2.93 and a corresponding  
P value of 0.04. At a type I error cutoff of _ = 0.05, we can conclude 
that the protein expression is significantly elevated relative to the refer-
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Figure 1 | The uncertainty in a sum or difference of random variables is the 
sum of the variables’ individual uncertainties, as measured by the variance. 
Numerical values reflect sample estimates from Figure 2. Horizontal error 
bars show s.d., which is 3Var. (a) Comparing a sample to a reference value 
involves only one measure of uncertainty: the variance of the sample’s 
underlying population, Var(X). The variance of the sample mean is reduced 
in proportion to the sample size as Var(X)/n, which is also the uncertainty in 
the estimate of the difference between sample and reference. (b) When the 
reference is replaced by sample Y of size m, the variance of Y contributes to 
the uncertainty in the difference of means.

(       )(      )
X

μ

μ μ12
11
10
9Ex

pr
es

sio
n t = t = X Y

X Y Xs

1 μ2

2
X Ys

s2s2= +
s 2s 2 / n  + / mp p

X
sX

sX

sX sX XsX sY sY

X X

Y

Y

Y

12
11
10
9Ex

pr
es

sio
n

One-sample t-test Two-sample t-testba

Figure 2 | In the two-sample test, both samples contribute to the 
uncertainty in the difference of means. (a) The difference between a sample 
(n = 5,  = 11.1, sX = 0.84) and a reference value (+ = 10) can be assessed 
with a one-sample t-test. (b) When the reference value is itself a sample  
(  = 10, sY = 0.85), the two-sample version of the test is used, in which the 
t-statistic is based on a combined spread of X and Y, which is estimated 
using the pooled variance, sp
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ence. For the two-sample case, t = 2.06 and P = 0.073. Now, when the 
reference is replaced with a sample, the additional uncertainty in our 
difference estimate has resulted in a smaller t value that is no longer 
significant at the same _ level. In the lookup between t and P for a 
two-sample test, we use d.f. = n + m – 2 degrees of freedom, which is 
the sum of d.f. values for each sample.

Our inability to reject the null hypothesis in the case of two samples 
is a direct result of the fact that the uncertainty in  –  is larger than 
in  – + (Fig. 1b) because now Var( ) is a contributing factor. To 
reach significance, we would need to collect additional measurements. 
Assuming the sample means and s.d. do not change, one additional 
measurement would be sufficient—it would decrease Var(  – ) and 
increase the d.f. The latter has the effect of reducing the width of the 
t-distribution and lowering the P value for a given t.

This reduction in sensitivity is accompanied by a reduction in 
power2. The two-sample test has a lower power than the one-sample 
equivalent, for the same variance and number of observations per 
group. Our one-sample example with a sample size of 5 has a power 
of 52% for an expression change of 1.0. The corresponding power for 
the two-sample test with five observations per sample is 38%. If the 
sample variance remained constant, to reach the 52% power, the two-
sample test would require larger samples (n = m = 7).

When assumptions are met, the two-sample t-test is the optimal 
procedure for comparing means. The robustness of the test is of inter-
est because these assumptions may be violated in empirical data. 
One way departure from optimal performance is reported is by the 
difference between _—the type I error rate we think we are testing 
at—and the actual type I error rate, o. If all assumptions are satisfied,  
_ = o, and our chance of committing a type I error is indeed equal to 
_. However, failing to satisfy assumptions can result in o�> _, causing 
us to commit a type I error more often than we think. In other words, 
our rate of false positives will be larger than planned for. Let’s examine 
the assumptions of the t-test in the context of robustness.

First, the t-test assumes that samples are drawn from populations 
that are normal in shape. This assumption is the least burdensome. 
Systematic simulations of a wide range of practical distributions find 
that the type I error rate is stable within 0.03 < o�< 0.06 for _ = 0.05 
for n ≥ 5 (ref. 3).

Next, sample populations are required to have the same variance 
(Fig. 1b). Fortunately, the test is also extremely robust with respect to 
this requirement—more so than most people realize3. For example, 
when the sample sizes are equal, testing at _ = 0.05 (or _ = 0.01) gives  
o�< 0.06 (o�< 0.015) for n ≥ 15, regardless of the difference in population  

variances. If these sample sizes are impractical, then we can fall back 
on the result that o�< 0.064 when testing at _ = 0.01 regardless of n or 
difference in variance. When sample sizes are unequal, the impact of 
a variance difference is much larger, and o can depart from _ substan-
tially. In these cases, the Welch’s variant of the t-test is recommended, 
which uses actual sample variances, sX

2/n + sY
2/m, in place of the 

pooled estimate. The test statistic is computed as usual, but the d.f. for 
the reference distribution depends on the estimated variances.

The final, and arguably most important, requirement is that the 
samples be uncorrelated. This requirement is often phrased in terms 
of independence, though the two terms have different technical defi-
nitions. What is important is that their Pearson correlation coefficient 
(l) be 0, or close to it. Correlation between samples can arise when 
data are obtained from matched samples or repeated measurements. 
If samples are positively correlated (larger values in first sample are 
associated with larger values in second sample), then the test performs 
more conservatively (o�< _)4, whereas negative correlations increase 
the real type I error (o�> _). Even a small amount of correlation can 
make the test difficult to interpret—testing at _ = 0.05 gives o�< 0.03 
for l�> 0.1 and o�> 0.08 for l�< –0.1.

If values can be paired across samples, such as measurements of the 
expression of the same set of proteins before and after experimental 
intervention, we can frame the analysis as a one-sample problem to 
increase the sensitivity of the test.

Consider the two samples in Figure 3a, which use the same 
values as in Figure 2b. If samples X and Y each measure different 
sets of proteins, then we have already seen that we cannot con-
fidently conclude that the samples are different. This is because 
the spread within each sample is large relative to the differences 
in sample means. However, if Y measures the expression of the 
same proteins as X, but after some intervention, the situation is 
different (Fig. 3b), now we are concerned not with the spread of 
expression values within a sample but with the change of expres-
sion of a protein from one sample to another. By constructing a 
sample of differences in expression (D; Fig. 3c), we reduce the test 
to a one-sample t-test in which the sole source of uncertainty is 
the spread in differences. The spread within X and Y has been fac-
tored out of the analysis, making the test of expression difference 
more sensitive. For our example, we can conclude that expression 
has changed between X and Y at P = 0.02 (t = 3.77) by testing  
against the null hypothesis that + = 0. This method is sometimes 
called the paired t-test.

We will continue our discussion of sample comparison next month, 
when we will discuss how to approach carrying out and reporting 
multiple comparisons. In the meantime, Supplementary Table 1 can 
be used to interactively explore two-sample comparisons. 
Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2858).
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Figure 3 | The paired t-test is appropriate for matched-sample 
experiments. (a) When samples are independent, within-sample variability 
makes differences between sample means difficult to discern, and we 
cannot say that X and Y are different at _ = 0.05. (b) If X and Y represent 
paired measurements, such as before and after treatment, differences 
between value pairs can be tested, thereby removing within-sample 
variability from consideration. (c) In a paired test, differences between 
values are used to construct a new sample, to which the one-sample test 
is applied (D

−
 = 1.1, sD = 0.65).
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