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POINTS OF SIGNIFICANCE

Bayesian statistics
Today’s predictions are tomorrow’s priors.

One of the goals of statistics is to make inferences about popula-
tion parameters from a limited set of observations. Last month, we 
showed how Bayes’ theorem is used to update probability estimates 
as more data are collected1. We used the example of identifying a coin 
as fair or biased based on the outcome of one or more tosses. This 
month, we introduce Bayesian inference by treating the degree of bias 
as a population parameter and using toss outcomes to model it as a 
distribution to make probabilistic statements about its likely values.

How are Bayesian and frequentist inference different? Consider 
a coin that yields heads with a probability of p. Both the Bayesian 
and the frequentist consider p to be a fixed but unknown constant 
and compute the probability of a given set of tosses (for example, k 
heads, Hk) based on this value (for example, P(Hk | p) = pk), which 
is called the likelihood. The frequentist calculates the probability of 
different data generated by the model, P(data | model), assuming a 
probabilistic model with known and fixed parameters (for example, 
coin is fair, P(Hk) = 0.5k). The observed data are assessed in light of 
other data generated by the same model.

In contrast, the Bayesian uses probability to quantify uncertainty 
and can make more precise probability statements about the state of 
the system by calculating P(model | data), a quantity that is meaning-
less in frequentist statistics. The Bayesian uses the same likelihood as 
the frequentist, but also assumes a probabilistic model (prior distri-
bution) for possible values of p based on previous experience. After 
observing the data, the prior is updated to the posterior, which is used 
for inference. The data are considered fixed and possible models are 
assessed on the basis of the posterior.

Let’s extend our coin example from last month to incorpo-
rate inference and illustrate the differences in frequentist and 
Bayesian approaches to it. Recall that we had two coins: coin C 
was fair, P(H | C) = p0 = 0.5, and coin Cb was biased toward heads, 
P(H | Cb) = pb = 0.75. A coin was selected at random with equal prob-
ability and tossed. We used Bayes’ theorem to compute the probabil-
ity that the biased coin was selected given that a head was observed; 
we found P(Cb | H) = 0.6. We also saw how we could refine our guess 
by updating this probability with the outcome of another toss: seeing 
a second head gave us P(Cb | H2) = 0.69.

In this example, the parameter p is discrete and has two pos-
sible values: fair (p0 = 0.5) and biased (pb = 0.75). The prior prob-
ability of each before tossing is equal, P(p0) = P(pb) = 0.5, and the 
data-generating process has the likelihood P(Hk | p) = pk. If we 
observe a head, Bayes’ theorem gives the posterior probabilities as 
P(p0 | H) = p0/(p0 + pb) = 0.4 and P(pb | H) = pb/(p0 + pb) = 0.6. Here 
all the probabilities are known and the frequentist and Bayesian 
agree on the approach and the results of computation.

In a more realistic inference scenario, nothing is known about 
the coin and p could be any value in the interval [0,1]. What can 
be inferred about p after a coin toss produces H3 (where HkTn–k 
denotes the outcome of n tosses that produced k heads and n–k 
tails)? The frequentist and the Bayesian agree on the data genera-
tion model P(H3 | p) = p3, but they will use different methods to 

encode experience from other coins and the observed outcomes.
In part, this compatibility arises because, for the frequentist, only 

the data have a probability distribution. The frequentist may test 
whether the coin is fair using the null hypothesis, H0: p = p0 = 0.5.  
In this case, H3 and T3 are the most extreme outcomes, each with 
probability 0.125. The P value is therefore P(H3 | p0) + P(T3 | p0) = 
0.25. At the nominal level of a = 0.05, the frequentist fails to reject H0 
and accepts that p = 0.5. The frequentist might estimate p using the 
sample percentage of heads or compute a 95% confidence interval for 
p, 0.29 < p ≤ 1. The interval depends on the outcome, but 95% of the 
intervals will include the true value of p.

The frequentist approach can only tell us the probability of obtain-
ing our data under the assumption that the null hypothesis is the 
true data-generating distribution. Because it considers p to be fixed, 
it does not recognize the legitimacy of questions like “What is the 
probability that the coin is biased towards heads?” The coin either 
is or is not biased toward heads. For the frequentist, probabilistic 
questions about p make sense only when selecting a coin by a known 
randomization mechanism from a population of coins.

By contrast, the Bayesian, while agreeing that p has a fixed true 
value for the coin, quantifies uncertainty about the true value as a 
probability distribution on the possible values called the prior distri-
bution. For example, if she knows nothing about the coin, she could 
use a uniform distribution on [0,1] that captures her assessment that 
any value of p is equally likely (Fig. 1a). If she thinks that the coin is 
most likely to be close to fair, she can pick a bell-shaped prior distri-
bution (Fig. 1a). These distributions can be imagined as the histo-
gram of the values of p from a large population of coins from which 
the current coin was selected at random. However, in the Bayesian 
model, the investigator chooses the prior based on her knowledge 
about the coin at hand, not some imaginary set of coins.

Given the toss outcome of H3, the Bayesian applies Bayes’ theorem 
to combine the prior, P(p), with the likelihood of observing the data, 
P(H3 | p), to obtain the posterior P(p | H3) = P(H3 | p) × P(p) / P(H3) 
(Fig. 1b). This is analogous to P(A | B) = P(B | A) × P(A)/P(B), except 
now A is the model parameter, B is the observed data and, because 
p is continuous P(∙) is interpreted as a probability density. The term 
corresponding to the denominator P(B), the marginal likelihood 
P(H3), becomes the normalizing constant so that the total probabil-
ity (area under the curve) is 1. As long as this is finite, it is often left 
out and the numerator is used to express the shape of density. That 
is the reason why it is commonly said that posterior distribution is 
proportional to the prior times the likelihood.
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Figure 1 | Prior probability distributions represent knowledge about the 
coin before it is tossed. (a) Three different prior distributions of p, the 
probability of heads. (b) Toss outcomes are combined with the prior to 
create the posterior distribution used to make inferences about the coin. 
The likelihood is the probability of observing a given toss outcome, which 
is p3 for a toss of H3. The gray area corresponds to the probability that the 
coin is biased toward heads. The error bar is the 95% credible interval (CI) 
for p. The dotted line is the posterior mean, E(p). The posterior is shown 
normalized to 4p3 to make its area 1.
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Suppose the Bayesian knows little about the coin and uses the uni-
form prior, P(p) = 1. The relationship between posterior and likeli-
hood is simplified to P(p | H3) = P(H3 | p) = p3 (Fig. 1b). The Bayesian 
uses the posterior distribution for inference, choosing the posterior 
mean (p = 0.8), median (p = 0.84) or value of p for which posterior is 
maximum (p = 1, mode) for a point estimate of p.

The Bayesian can also calculate 95% credible region, the smallest 
interval over which we find 95% of the area under the posterior—
which is [0.47,1] (Fig. 1b). Like the frequentist, the Bayesian cannot 
conclude that the coin is not biased, because p = 0.5 falls within the 
credible interval. Unlike the frequentist, they can make statements 
about the probability that the coin is biased toward heads (94%) using 
the area under the posterior distribution for p > 0.5 (Fig. 1b). The 
probability that the coin is biased toward tails is P(p < 0.5 | H3) = 0.06. 
Thus, given the choice of prior, the toss outcome H3 overwhelmingly 
supports the hypothesis of head bias, which is 0.94/0.06 = 16 times 
more likely than tail bias. This ratio of posterior probabilities is called 
the Bayes factor and its magnitude can be associated with degree of 
confidence2. By contrast, the frequentist would test H0 p0 ≤ 0.5 versus  
HA p0 > 0.5 using the P value based on a one-tailed test at the bound-
ary (p0 = 0.5) and obtain P = 0.125 and would not reject the null 
hypothesis. Conversely, the Bayesian cannot test the hypothesis that 
the coin is fair because, in using the uniform prior, statements about 
P are limited to intervals and cannot be made for single values of p 
(which always have zero prior and posterior probabilities).

Suppose now that we suspect the coin to be head-biased and 
want a head-weighted prior (Fig. 1a). What would be a justifiable 
shape? It turns out that if we consider the general case of n tosses 
with outcome HkTn–k, we arrive at a tidy solution. With a uniform 
prior, this outcome has a posterior probability proportional to  
pk(1 – p)n–k. The shape and interpretation of the prior is motivated by 
considering nʹ more tosses that produce kʹ heads, HkʹTn–kʹ. The com-
bined toss outcome is Hk+kʹT(n+nʹ)–(k+kʹ), which, with a uniform prior, 
has a posterior probability proportional to pk+kʹ(1 – p)(n+nʹ)–(k+kʹ). 
Another way to think about this posterior is to treat the first set of 
tosses as the prior, pk(1 – p)n–k, and the second set as the likelihood, 
pkʹ(1 – p)n–kʹ. In fact, if we extrapolate this pattern back to 0 tosses 
(with outcome H0T0), the original uniform prior is exactly the distri-
bution that corresponds to this: p0(1 – p)0 = 1. This iterative updating 
by adding powers treats the prior as a statement about the coin based 
on the outcomes of previous tosses.

Let’s look how different shapes of priors might arise from this line of 
reasoning. Suppose we suspect that the coin is biased with p = 0.75. In a 
large number of tosses we expect to see 75% heads. If we are uncertain 
about this, we might let this imaginary outcome be H3T1 and set the 
prior proportional to p3(1 – p)1 (Fig. 2a). If our suspicion is stronger,  

we might use H15T5 and set the prior proportional to p15(1 – p)5. In 
either case, the posterior distribution is obtained simply by adding the 
number of observed heads and tails to the exponents of p and (1 – p), 
respectively. If our toss outcome is H3T1, the posteriors are propor-
tional to p6(1 – p)2 and p18(1 – p)6.

As we collect data, the impact of the prior is diminished and the 
posterior is shaped more like the likelihood. For example, if we use 
a prior that corresponds to H3T1, suggesting that the coin is head-
biased, and collect data that indicates otherwise and see tosses of 
H1T3, H5T15 and H25T75 (75% tails), our original misjudgment about 
the coin is quickly mitigated (Fig. 2b).

In general, a distribution on p in [0,1] proportional to pa–1(1 – p)b–1 
is called a beta(a,b) distribution. The parameters a and b must be posi-
tive, but they do not need to be whole numbers. When a ≥ 1 and b 
≥ 1, then (a + b – 2) is like a generalized number of coin tosses and 
controls the tightness of the distribution around its mode (location of 
maximum of the density), and (a – 1) is like the number of heads and 
controls the location of the mode.

All of the curves in Figure 2 are beta distributions. Priors corre-
sponding to a previous toss outcomes of HkTn–k are beta distributions 
with a = k + 1 and b = n – k + 1. For example, the prior for H15T5 
has a shape of beta(16,6). For a prior of beta(a,b), a toss outcome of 
HkTn–k will have a posterior of beta(a + k, b + n – k). For example, the 
posterior for a toss outcome of H3T1 using a H15T5 prior is beta(19,7).

In general, when the posterior comes from the same family of dis-
tributions as the prior with an update formula for the parameter, we 
say that the prior is conjugate to the distribution generating the data. 
Conjugate priors are convenient when they are available for data-gen-
erating models because the posterior is readily computed. The beta 
distributions are conjugate priors for binary outcomes such as H or T 
and come in a wide variety of shapes, flat, skewed, bell- or U- shaped. 
For a prior on the interval [0,1], it is usually possible to pick values of 
(a,b) for a suitable head probability prior for coin tosses (or the success 
probability for independent binary trials).

Frequentist inference assumes that the data-generating mecha-
nism is fixed and that only the data have a probabilistic component. 
Inference about the model is therefore indirect, quantifying the agree-
ment between the observed data and the data generated by a putative 
model (for example, the null hypothesis). Bayesian inference quan-
tifies the uncertainty about the data-generating mechanism by the 
prior distribution and updates it with the observed data to obtain the 
posterior distribution. Inference about the model is therefore obtained 
directly as a probability statement based on the posterior. Although 
the inferential philosophies are quite different, advances in statistical 
modeling, computing and theory have led many  statisticians to keep 
both sets of methodologies in their data analysis toolkits.
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Figure 2 | Effect of choice of prior and amount of data collected on the 
posterior. All curves are beta(a,b) distributions labeled by their equivalent 
toss outcome, Ha–1Tb–1. (a) Posteriors for a toss outcome of H3T1 using 
weakly (H3T1) and strongly (H15T5) head-weighted priors. (b) The effect 
of a head-weighted prior, H3T1, diminishes with more tosses (4, 20, 100) 
indicative of a tail-weighted coin (75% tails).
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Corrigendum: Bayesian statistics
Jorge López Puga, Martin Krzywinski & Naomi Altman
Nat. Methods 12, 377–378 (2015); published online 29 April 2015; corrected after print 24 September 2015.

In the version of this article initially published, the curves (in red) showing the likelihood distribution in Figure 2 were incorrectly drawn 
in some panels. The error has been corrected in the HTML and PDF versions of the article.
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