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for A lists all possible states for A, and the CPT lists all possible state 
combinations of A and B. Once the network is constructed and the 
probabilities specified, Bayes’ theorem is used to propagate prob-
ability through the model.

We’ll use a hypothetical gene regulation pathway (Fig. 1a) to 
illustrate calculations and inferences in the corresponding Bayesian 
network, in which genes are modeled as binary variables with a 
probability of being in an active (Y) or inactive (N) state (Fig. 1b). 
Genes A and B have no incoming edges and their probabilities do 
not depend on the state of other genes. These genes are therefore 
characterized by their marginal probabilities P(A) = 80% and P(B) 
= 10%. The state of genes C, D and E depends on the state of others, 
so conditional probabilities are used and reflect that A and B have an 
activating effect on C (e.g., P(C|AB) = 90%) and that B and C have 
an inhibitory effect on D and E, respectively (e.g., P(E|C) = 15%). 
Note that the conditional probabilities for a gene are expressed only 
in terms of its immediate parent—although A influences E, only the 
state of C is used in E’s CPT.

Using the CPT (Fig. 1b), we can compute the prior probabilities 
for each node3 (Fig. 1c). For A and B, these are the observed base 
rate (80% and 10%, respectively). The prior for C can be calculated 
by considering the total of all the probabilities of combinations of 
states of A and B that activate C, which is, P(C) = P(A)P(B)P(C|AB) 
+ P(a)P(B)P(C|aB) + P(A)P(b)P(C|Ab) + P(a)P(b)P(C|ab) = 63%. 
Similarly, the priors for D and E are P(D) = 69% and P(E) = 44%.

An important quantity in a Bayesian network is the joint probabil-
ity distribution, which allows us to calculate the probability of all the 
nodes being in any given set of states. For example, the probability 
that all genes in our network are active is very unlikely: P(ABCDE) =  
P(A)P(B)P(C|AB)P(D|B)P(E|C) = 0.8 × 0.1 × 0.9 × 0.2 × 0.15 = 
0.2%. Because B and C have an inhibitory effect and the chance of 
B being active is low, a much more likely state is P(AbCDe) = P(A)
P(b)P(C|Ab)P(D|b)P(e|C) = 0.8 × 0.9 × 0.75 × 0.75 × 0.85 = 34%.

If we make no additional observations about the gene states and 
our only source of information about their states is the CPT, the 
states of A and B are independent because they share no edge or 
common ancestor. Consequently, knowing the state of A does not 
change our beliefs about the state of B (Fig. 2a). For example, if we 
observe that A is active, our belief about the state of B being active 
remains unchanged: P(BIA) = 0.1. However, because A influences 

POINTS OF SIGNIFICANCE

Bayesian networks
For making probabilistic inferences, a graph is 
worth a thousand words.

Many physical and biological processes can be naturally modeled as 
a network of causal influences. When the number of influences is 
large, interactions between causes and effects can be modeled using 
Bayesian networks, which combine network analysis with Bayesian 
statistics. Bayesian networks are widely used in genetic analysis, inte-
gration of biological data and modeling signaling pathways1,2. We 
have already seen how Bayes’ theorem is used to infer the probability 
of a cause when its effect is observed3. This month we provide a brief 
description of Bayesian networks and how Bayes’ theorem is used to 
propagate information in them.

A Bayesian network is a graph in which nodes represent entities 
such as molecules or genes. Nodes that interact are connected by 
edges in the direction of influence; the edge A→B implies that A (the 
parent) has an effect on B (the child). In general, a Bayesian network 
is a directed acyclic graph—cycles are not allowed. Importantly, each 
node has attached to it probabilities that define the chance of finding 
the node in a given state. Conditional probabilities are used if the 
state of a node depends on the state of another. These dependen-
cies propagate through the network and influence the probabilities 
of other nodes, which are updated as new information about the 
nodes becomes available. Thus, Bayesian networks are also called 
probabilistic causal models.

Nodes with continuous variables are parameterized using prob-
ability functions, and those with discrete variables using probability 
tables. For example, consider the simple two-node network A→B 
where A and B are binary variables with two states (N or Y). The 
table at node A would contain the marginal probability P(A = Y). 
For simplicity, we’ll use “A” to mean A = Y and “a” to mean A = N so 
that P(A = Y) and P(A = N) can be written more briefly as P(A) and 
P(a), respectively. By complementarity, P(a) = 1 – P(A). At node B 
we would have the conditional probabilities P(B|A) and P(Bla) that 
define how the state of B depends on the state of A. The conditional 
probability table (CPT) can be completed using complementarity: 
P(b|A) = 1 – P(B|A) and P(b|a) = 1 – P(B|a). Thus, the marginal table 

Figure 1 | Bayesian network of regulation between five genes.  
(a) A five-gene regulation pathway. A and B activate C. C and B inhibit E, 
and B inhibits D. (b) Bayesian network representation of the regulation 
pathway with interactions parameterized as probabilities of the active 
state. Conditional probabilities for nodes C, D and E describe dependencies 
on parent nodes. A bar plot of the probability table helps with quantitative 
comparisons. (c) Prior probabilities calculated from the conditional 
probabilities in b. All values are probabilities of the active state expressed 
in percent and rounded to the nearest integer.

Figure 2 | Observing the state of a node can change the estimate of the 
states of other nodes. Shown are posterior probabilities updated from 
the priors from Figure 1c (and the difference computed using rounded 
probabilities except for D, for which these differences are small) using 
observations about nodes. (a) Observations propagate along serial chains, 
such as A→C→E. By observing A active, C’s posterior P(C|A) = 76% increases  
by 13% from the prior P(C) = 63%. B and D are unaffected. (b) Effect of 
observation can propagate backwards along a path. Observing C affects 
posteriors of all nodes—its causes and effects. (c) Propagation of 
information can be altered by observations. Once C is observed, observations 
about A now influence B and D but no longer influence E. (d) Observing 
something about an effect changes our estimates of all of its causes.
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C, any new knowledge about A requires us to update our estimate 
of the probability that C is active by calculating the posterior prob-
ability. We do so by considering both states of B and obtain P(C|A) 
= P(B)P(C|AB) + P(b)P(C|Ab) = 76% (Fig. 2a). Similarly, P(E|A) = 
P(C|A)P(E|C) + P(c|A)P(E|c) = 34%. In this way Bayes’ theorem can 
integrate the CPT and new observations and propagate probabilities 
of each node in the direction of the edges, A→C→E.

Influence between nodes can also propagate backwards along 
an edge. For example, Bayes’ theorem for A→C is P(A|C) =  
P(C|A)P(A)/P(C), which tells us that the state of A depends on 
information about C. By observing C, we can refine our esti-
mation about the state of A—knowing the state of an effect can 
inform us about the cause. For example, if we observe that C is 
active, we find P(A|C) = 0.765 × 0.8 / 0.63 = 97%, an increase 
of 17% over the prior (Fig. 2b). Here we used P(C|A) = P(B)
P(C|AB)+P(b)P(C|Ab) = 0.1 × 0.9 + 0.9 × 0.75 = 0.765. Similarly, 
because B is also a parent of C, the posterior for B can be updated 
to P(B|C) = 13%, which is an increase of 3% (Fig. 2b).

Having information about one node can change how infor-
mation propagates through other nodes. Above, we saw that A 
affects C but not B (Fig. 2a). However, if we have information 
about C, we find that A now affects B, even though they do not 
share an edge or ancestors (Fig. 2c). This relationship between A 
and B is called conditional dependence and occurs, for example, 
between two parent nodes in the presence of information about 
a common child. In other words, if we know something about 
the effect (C) and one cause (A), we can say something about 
the alternative cause (B). Similarly, information about node E 
induces conditional dependencies in all the nodes.

In the context of our gene network, we can reason about this 
conditional dependence as follows. If A and B both activate C 
(Fig. 1a) and we find that C is active, observing A to be active 
allows us to attribute activation of C to A and thus reduces our 
belief that B must be active. In other words, P(B|AC) < P(B|C), 
as seen by the decrease in posteriors of B from 13% to 12% (Fig. 
2b,c). We can calculate these posteriors using the conditional 
variant of Bayes’ theorem, P(B|AC) = P(C|AB)P(B|A)/P(C|A). 
This relationship can be derived from factoring the joint prob-
ability P(ABC) = P(B|AC)P(C|A)P(A) = P(C|AB)P(B|A)P(A). 
Using P(C|A) = 0.765 as calculated above, we have P(B|AC) = 
0.9 × 0.1 / 0.765 = 12% (Fig. 2a). If instead we observe A inac-
tive, then we attribute the activation of C to B and increase our 
belief that B is active—the posterior P(B|C) = 13% increases to 
P(B|aC) = 57%.

New observations can also block the propagation of information 
down a path. For example, if we make an observation about the state 
of C, information about the state of A no longer provides informa-
tion about the state of E (Fig. 2c). In this case, E becomes condition-
ally independent of A given C and we can write P(E|AC) = P(E|C).

Figure 3 shows cases in which new information creates conditional 
dependence and independence—relationships not explicitly repre-
sented by edges. Information about A and D does not create any such 
dependencies: in light of new observations, information propagates 
as before (Fig. 3a). However, observation about B splits the model, 
and conditional independencies arise—changing D no longer affects 
C and E (Fig. 3b). Observing C connects A and B as well as A and D 
by conditional dependencies and disconnects the effects of A, B and 
D on E (Fig. 3b). Observing E connects A to B and D. 

The concept of conditional independence has practical implica-
tions when propagating probability in a Bayesian network and gives 
rise to three types of basic connections: serial, diverging and con-
verging. Depending on the type of connection, new observations 
about nodes can change the scope of propagation of information. 
In a serial type of connection (causal chain), propagation can be 
blocked. As we’ve seen, information about any of the nodes along 
A→C→E updates the others in the chain forward and backward 
and is limited to the nodes in the chain—altering A affects C and E 
but not B (Fig. 3a). But if we observe C, E becomes independent of 
A (Fig. 3b). In a diverging connection (C←B→D), a similar block 
to propagation can occur. Here, child nodes are related through 
the parent node, and probability propagates from child to child. 
However, if evidence is gathered for B, the child nodes become con-
ditionally independent (Fig. 3b). In converging connections such as 
A→C←B, additional information can actually extend the scope of 
propagation. If we know something about an intermediate variable 
(C), the model splits, and each side of the chain turns conditionally 
dependent given the observed variable—now A has an effect on B 
(Fig. 3b).

Bayesian networks are statistical tools to model the qualitative 
and quantitative aspects of complex multivariate problems and can 
be used for diagnostics, classification and prediction. Time series 
and feedback loops, common in biological systems, can be mod-
eled by using dynamic Bayesian networks, which allow cycles. One 
of the most interesting fields where Bayesian networks are used is 
the identification of ‘latent’ structures of relations in big databases4. 
Learning a Bayesian network automatically by estimating the nodes, 
edges and associated probabilities from data is difficult, but it can 
help to discover unsuspected relations between, for example, genes 
and diseases.
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Figure 3 | Observation about child nodes creates conditional dependencies 
and independencies between its parent nodes on different paths.  
(a) Observation about A and D does not create new conditional 
relationships. (b) Observation about B, C and E generates both dependencies 
and independencies. Observing C or E causes A and B (or D) to influence 
each other. Observing B or C splits the model and blocks propagation (e.g., 
D and E become independent).
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