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POINTS OF SIGNIFICANCE

Analyzing outliers: 
influential or nuisance?
Some outliers influence the regression fit more 

than others.

In our recent columns, we discussed how linear regression can 

be used to predict the value of a response variable on the basis of 

one or more predictor variables1,2. We saw that even when a fit 

can be readily obtained, interpreting the results is not as straight-

forward. For example, when predictors are correlated, regression 

coefficients cannot be reliably estimated—and may actually have 

the wrong sign—even though the model remains predictive2. This 

month we turn to methods that diagnose the regression, begin-

ning with the effect that outliers have on the stability of predicted 

values. Other diagnostics, such as for stability of the regression 

coefficient estimates and for statistical inference, will be the sub-

ject of a future column.

Recall that simple linear regression is a model for the conditional 

mean E(Y|X) = 0 + 1X of the response, Y, given a single predictor, 

X. Because of biological or technical variability, we expect deviation 

between the conditional mean and the observed response. This is 

called the error, and when it can be assumed to be additive, be inde-

pendent and have zero mean, least-squares estimation (LSE) is most 

commonly used to determine the respective estimates b0 and b1 of 

regression parameters 0 and 1. LSE minimizes the residual sum 

of squares, SSE = (yi – ŷi)
2, where ŷi = b0 + b1xi are the fitted values. 

An estimate of the error is given by the residual ri = yi – ŷi. In addi-

tion, it is often assumed that errors are normally distributed and have 

constant variance that is independent of the values of the predictors.

One of the most common regression diagnostics involves iden-

tifying outliers and evaluating their effect on the estimates of the 

fit parameters; this helps us understand how much influence indi-

vidual observations have on the fit. To illustrate, we will use our 

simple linear regression model1 that relates height (H, in centi-

meters) to weight (W, in kilograms): W = –45 + 2H/3 + , with  

normally distributed with zero mean and Var( ) = 1.

A key observation is that the regression line always goes 

through the predictor and response mean (Fig. 1a). The means 

act as a pivot, and if the predictor value is far from the mean, 

any unusual values of the corresponding response lead to larger 

‘swings’ in the regression slope. As a consequence, observations 

farther from the mean have a greater effect on the fit. We show 

this in Figure 1b,c, where we simulate an outlier by subtracting 

three times the noise in the model, 3Var( ), from an observa-

tion in the sample shown in Figure 1a. Subtracting from the 

sixth observation has very little impact on the fitted value at this 

position, which drops from 65.2 to 64.9, and essentially no effect 

on the slope (Fig. 1b). Doing the same to the 11th observation 

decreases both to a greater extent: the fitted value drops from 68.7 

to 67.5, and the slope from 0.70 to 0.57 (Fig. 1c).

Note that this adjustment also affects the SSE, which is used 

to estimate the standard errors of the regression coefficients and 

fitted values, and may have a large effect on the statistical infer-

ence even when the influence on the fit is small. For our example, 

the SSE is larger for the fit obtained by moving the low-leverage 

observation (Fig. 1b) than for the case of the high-leverage one 

(Fig. 1c).

Influence of an observation (xi, yi) on the fit can be quantified 

on the basis of the extent to which a change in the observation 

affects the corresponding fitted value ŷi. There are two compo-

nents to influence. The first is due to the distance between xi and 

the mean of x, called the leverage, which can be thought of as 

the effect of a unit change in yi on the fitted value. The second is 

due to the distance between yi and the fitted value at xi when the 

line is fitted without (xi, yi), captured by a quantity called Cook’s 

distance.

For simple linear regression, the leverage is given by hii = 1/n 

+ (xi – x–)2/Sxx, where Sxx = i(xi – x–)2 (Fig. 2a). The subscript ii 
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Figure 1 | Observations near the mean have less influence on the regression 

estimates and fitted values. (a) A simple linear regression line always goes 

through the means of the predictor and the response. Shown are values for a 

sample with n = 11 (black dots) simulated with W(H) = –45 + 2/3H + , with 

the noise distributed normally and with zero mean and variance of 1. The 

regression (black line) passes through (mean height mH = 165, mean weight 

mW = 65.2) and has a slope of 0.70. Also shown are the 95% confidence 

interval (dark gray band) and 95% prediction interval (light gray band).  

(b) The fit (blue line) for a new sample (blue dots) derived from 

observations shown in a by modifying the sixth weight at H = 165 from 

W(165) = 65 to W(165) = 62. The black line is the fit from a. (c) Same as 

b, except here we obtained the new sample (orange dots) by changing the 

11th weight in a from W(170) = 68.3 to W(170) = 65.3. The sum of squared 

residuals (SSE) is shown for each fit.
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Figure 2 | The leverage, residual and Cook’s distance of an observation are 

used to assess the robustness of the fit. (a) The leverage of an observation 

tells us about its potential to influence the fit and increases as the square 

of the distance from the predictor value to its mean. Shown are leverage 

values for the data set in Figure 1a. Leverage values larger than (2p + 2)/n 

= 0.36 (dotted line; p = 1, n = 11) are considered large for p predictors and 

sample size n. (b) The residual is the distance between the observation 

and its fitted value, yi – ŷi, shown here for the three fits in Figure 1 as 

a function of the predictor value (left) and fitted weight (right). Colors 

of points correspond to the colors of the fitted lines in Figure 1, and 

there is a horizontal offset of half the width of a data point where points 

would otherwise occlude each other. (c) Cook’s distance is a measure of 

the influence of each data value on the fit and values greater than 4/n = 

0.36 (dotted line; n = 11) are considered high influence. Shown are Cook’s 

distances for each fit in Figure 1.
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Another way to write Cook’s distance is j(ŷj – ŷj(i))
2/((p + 1) 

× MSE), where ŷj(i) are the fitted values obtained by excluding 

observation i. When expressed in this way, Cook’s distance can 

be seen more intuitively as proportional to the distance that the 

predicted values would move if the observation in question were 

to be excluded. Thus, Cook’s distance is a ‘leave one out’ measure 

of how the fitted values (or, equivalently, the slopes) depend on 

each observation.

The Di and hii diagnostics, together with the standardized resid-

ual ri/ MSE, are often considered separately, even though they are 

related. Large values of any of these indicate that the predicted 

values and estimated regression coefficients may be sensitive to 

a few unusual data values. Plots that combine these values can 

provide information-dense diagnostics, but care is required in 

their interpretation. For example, the standardized residual can be 

plotted as a function of leverage (Fig. 3). Observations with high 

leverage and large residuals immediately stand out. However, as 

mentioned, the fit may be pulled toward outliers with high lever-

age, resulting in small residuals.

Once outliers have been identified, it remains to be determined 

how to proceed. If the outliers can be attributed to spurious tech-

nical error, handling them may be as simple as removing them 

from the sample or repeating the experiment. However, they may 

have arisen purely by chance and be a result of biological variabil-

ity. In this case, removing them would lead to underestimation 

of the variability in the data and unduly influence inference. As 

multiple linear regression is often just a local approximation to a 

nonlinear process, influential high-leverage points may also indi-

cate that the linear approximation must be restricted to a smaller 

region of the predictor space.

Except when the outliers can be clearly identified as due to a mis-

take in the experiment, it is never appropriate to simply remove 

them from the analysis. In some cases, it is necessary to enlarge the 

scope of the model to explain the outliers. In others, the effects of 

the outliers on the fitted model and the resulting scientific conclu-

sions should be discussed. Although it is sometimes appropriate to 

consider the model that best fits the bulk of the data, and thus not 

use the outliers for prediction, the outliers that were removed need 

to be clearly identified, along with the reasons for not using them.

To understand a predictive model, we need to understand not 

only the predictions but also how they may be perturbed as new 

data are observed. Outlying data are often the best indicators of 

the stability of our predictions; if their exclusion disproportionately 

alters the fit or sways the outcome of inference, a more complete 

model may be needed.
Corrected after print 14 April 2016.
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originates from the fact that the leverage is a diagonal element in 

the so-called hat matrix. Leverage is minimum when xi = x–, but not 

zero—leverage is always between 1/n and 1, and an observation 

affects the fitted value even if it has minimum leverage. Typically 

an observation is said to have high leverage if hii > (2p + 2)/n. For 

our example this cutoff is 0.36 for p = 1 predictors and a sample 

size of n = 11.

For multiple regression, the computation of hii is more compli-

cated, but it still measures the distance between the vector of pre-

dictors and their mean. It is possible for predictors to individually 

have typical values but have large hii. For example, if height and 

weight are predictors in a sample of adult humans, 55 kg might be 

a typical weight and 185 cm might be a typical height, but a 55-kg 

individual who is 185 cm tall could be unusual, and so this par-

ticular combination of height and weight can have large leverage.

Recall that fitted values are chosen to minimize the residu-

als, as the LSE minimizes SSE = ri
2. Thus, because observa-

tions with high leverage have greater potential to influence the 

fit, they can pull the fit toward them and have small residuals, at 

the cost of increased residuals for low-leverage observations. This 

can be diagnosed by a plot of the residuals versus the fitted val-

ues (Fig. 2b). Typically, high-leverage points that also have large 

error pull the fit away from the other points, creating a trend in the 

residuals. For our example, the residual of the 11th observation is 

still large because decreasing it further would increase the magni-

tude of the other residuals; however, outliers at even higher lever-

ages may have residuals that are smaller than more typical obser-

vations. In contrast, outliers in y with small leverage values will 

appear as large residuals near the center of the plot. In addition to 

telling us something about the influence of an observation, residu-

als are useful in identifying lack of fit and assessing the validity of 

assumptions about the noise, as we will show in a future column.

The leverage of an observation and its residual are different 

attributes, but both contribute to the observation’s influence on 

the fit. Therefore, it is useful to combine them into a quantity 

called Cook’s distance (Fig. 2c), Di = (ri
2/((p + 1) × MSE)) × (hii/

(1 – hii)
2), where the mean squared error MSE = ri

2/(n – p – 1).  
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Figure 3 | A plot of residuals as a function of leverage identifies influential 

observations that are not modeled well by the regression. These quantities 

are shown here for each of the fits in Figure 1. The contour of Cook’s 

distance of 4/n = 0.36 (n = 11) is shown by a black line. The sixth 

observation that was adjusted (Fig. 1b) stands out as a low-leverage 

outlier (middle panel). In contrast, the 11th observation (Fig. 1c) has high 

leverage, a large residual and a large Cook’s distance (right panel).
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Corrigendum: Analyzing outliers: influential or nuisance?

Naomi Altman & Martin Krzywinski
Nat. Methods 13, 281–282 (2016); published online 30 March 2016; corrected after print 14 April 2016

In the version of this piece initially published, there were two errors. The equation describing mean squared error (MSE) was incor-
rect in the PDF file. In the legend for Figure 1a, the stated values for mean height and mean weight were switched. The errors have 
been corrected in the HTML and the PDF versions of the piece.  

CORRIGENDA
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