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Points of Significance

Analysis of variance and 
blocking
Good experimental designs mitigate experimental 
error and the impact of factors not under study.

Reproducible measurement of treatment effects requires studies that 
can reliably distinguish between systematic treatment effects and 
noise resulting from biological variation and measurement error. 
Estimation and testing of the effects of multiple treatments, usu-
ally including appropriate replication, can be done using analysis of 
variance (ANOVA). ANOVA is used to assess statistical significance 
of differences among observed treatment means based on whether 
their variance is larger than expected because of random variation; if 
so, systematic treatment effects are inferred. We introduce ANOVA 
with an experiment in which three treatments are compared and 
show how sensitivity can be increased by isolating biological vari-
ability through blocking.

Last month, we discussed a one-factor three-level experimental 
design that limited interference from biological variation by using 
the same sample to establish both baseline and treatment values1. 
There we used the t-test, which is not suitable when the number 
of factors or levels increases, in large part due to its loss of power 
as a result of multiple-testing correction. The two-sample t-test is 
a specific case of ANOVA, but the latter can achieve better power 
and naturally account for sources of error. ANOVA has the same 
requirements as the t-test: independent and randomly selected sam-
ples from approximately normal distributions with equal variance 
that is not under the influence of the treatments2.

Here we continue with the three-treatment example1 and analyze 
it with one-way (single-factor) ANOVA. As before, we simulated 
samples for k = 3 treatments each with n = 6 values (Fig. 1a). The 
ANOVA null hypothesis is that all samples are from the same dis-
tribution and have equal means. Under this null, between-group 
variation of sample means and within-group variation of sample 

values are predictably related. Their ratio can be used as a test statis-
tic, F, which will be larger than expected in the presence of treatment 
effects. Although it appears that we are testing equality of variances, 
we are actually testing whether all the treatment effects are zero.

ANOVA calculations are summarized in an ANOVA table, which 
we provide for Figures 1, 3 and 4 (Supplementary Tables 1–3) 
along with an interactive spreadsheet (Supplementary Table 4).  
The sums of squares (SS) column shows sums of squared devia-
tions of various quantities from their means. This sum is per-
formed over each data point—each sample mean deviation (Fig. 
1a) contributes to SSB six times. The degrees of freedom (d.f.) 
column shows the number of independent deviations in the sums 
of squares; the deviations are not all independent because devia-
tions of a quantity from its own mean must sum to zero. The 
mean square (MS) is SS/d.f. The F statistic, F = MSB/MSW, is used 
to test for systematic differences among treatment means. Under 
the null, F is distributed according to the F distribution for k – 1 
and N – k d.f. (Fig. 1b). When we reject the null, we conclude that 
not all sample means are the same; additional tests are required 
to identify which treatment means are different. The ratio  
η2 = SSB/(SSB + SSW) is the coefficient of variation (also called 
R2) and measures the fraction of the total variation resulting from 
differences among treatment means.

We previously introduced the idea that variance can be partitioned: 
within-group variance, swit

2, was interpreted as experimental error 
and between-group variance, sbet

2, as biological variation1. In one-
way ANOVA, the relevant quantities are MSW and MSB. MSW cor-
responds to variance in the sample after other sources of variation 
have been accounted for and represents experimental error (σwit

2). If 
some sources of error are not accounted for (e.g., biological variation), 
MSW will be inflated. MSB is another estimate for MSW, additionally 
inflated by average squared deviation of treatment means from the 
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Figure 1 | ANOVA is used to determine significance using the ratio of 
variance estimates from sample means and sample values. (a) Between- and 
within-group variance is calculated from SSB, the between treatment sum 
of squares, and SSW, the within treatment sum of squares.. Deviations are 
shown as horizontal lines extending from grand and sample means. The test 
statistic, F, is the ratio mean squares MSB and MSW, which are SSB and SSW 
weighted by d.f. (b) Distribution of F, which becomes approximately normal 
as k and N increase, shown for k = 3, 5 and 10 samples each of size n = 6.  
N = kn is the total number of sample values. (c) ANOVA analysis of sample 
sets with decreasing within-group variance (σw

2 = 6,2,1). MSB = 6 in each 
case. Error bars, s.d. 
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Figure 2 | Blocking improves sensitivity by isolating variation in samples 
that is independent from treatment effects. (a) Measurements from 
treatment aliquots derived from different cell cultures are differentially 
offset (e.g., 1, 0.5, –0.5) because of differences in cultures. (b) When 
aliquots are derived from the same culture, measurements are uniformly 
offset (e.g., 0.5). (c) Incorporating blocking in data collection schemes. 
Repeats within blocks are considered technical replicates. In an incomplete 
block design, a block cannot accommodate all treatments.
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Figure 3 | Application of one-factor ANOVA to comparison of three samples. 
(a) Three samples drawn from normal distributions with swit

2 = 2 and 
treatment means mA = 9, mB = 10 and mC = 11. (b) Depiction of deviations 
with corresponding SS and MS values. (c) Sample means and their differences. 
P values for paired sample comparison are adjusted for multiple comparison 
using Tukey’s method. Error bars, 95% CI.
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grand mean, θ2, times sample size if the null hypothesis is not true 
(σwit

2 + nθ2). Thus, the noisier the data (σwit
2), the more difficult it 

is to tease out σtreat
2 and detect real effects, just like in the t-test, the 

power of which could be increased by decreasing sample variance2. To 
demonstrate this, we simulated three different sample sets in Figure 
1c with MSB = 6 and different MSW values, for a scenario with fixed 
treatment effects (σtreat

2 = 1), but progressively reduced experimental 
error (σwit

2 = 6,2,1). As noise within samples drops, a larger fraction 
variation is allocated to MSB, and the power of the test improves. This 
suggests that it is beneficial to decrease MSW. We can do this through a 
process called blocking to identify and isolate likely sources of sample 
variability. 

Suppose that our samples in Figure 1a were generated by measur-
ing the response to treatment of an aliquot of cells—a fixed volume of 
cells from a culture (Fig. 2a). Assume that it is not possible to derive 
all required aliquots from a single culture or that it is necessary to 
use multiple cultures to ensure that the results generalize. It is likely 
that aliquots from different cultures will respond differently owing to 
variation in cell concentration, growth rates, medium composition, 
among others. These so-called nuisance variables confound the real 
treatment effects: the baseline for each measurement unpredictably 
varies (Fig. 2a). We can mitigate this by using the same cell culture 
to create three aliquots, one for each treatment, to propagate these 
differences equally among measurements (Fig. 2b). Although mea-
surements between cultures still would be shifted, the relative differ-
ences between treatments within the same culture remain the same. 
This process is called blocking, and its purpose is to remove as much 
variability as possible to make differences between treatments more 
evident. For example, the paired t-test implements blocking by using 
the same subject or biological sample. 

Without blocking, cultures, aliquots and treatments are not 
matched—a completely randomized design (Fig. 2c)—which makes 
differences in cultures impossible to isolate. For blocking, we system-
atically assign treatments to cultures, such as in a randomized com-
plete block design, in which each culture provides a replicate of each 
treatment (Fig. 2c). Each block is subjected to each of the treatments 
exactly once, and we can optionally collect technical repeats (repeat-
ing data collection from the measurement apparatus or multiple ali-
quots from the same culture) to minimize the impact of fluctuations 
in our measuring apparatus; these values would be averaged. In the 
case where a block cannot support all treatments (e.g., a culture yields 
only two aliquots), we would use combinations of treatment pairs 

with the requirement that each pair is measured equally often—a 
balanced incomplete block design. Let us look at how blocking can 
increase ANOVA sensitivity using the scenario from Figure 1.

We will start with three samples (n = 6) (Fig. 3a) that measure the 
effects of treatments A, B and C on aliquots of cells in a completely 
randomized scheme. We simulated the samples with σwit

2 = 2 to rep-
resent experimental error. Using ANOVA, we partition the variation 
(Fig. 3b) and find the mean squares for the components (MSB = 6.2,  
MSW = 2.0; Supplementary Table 2). MSW reflects the value σwit

2 
= 2 in the sample simulation, and it turns out that this variance is 
too high to yield a significant F; we find F = 3.1 (P = 0.08; Fig. 3c). 
Because we did not find a significant difference using ANOVA, we 
do not expect to obtain significant P values from two-sample t-tests 
applied pairwise to the samples. Indeed, when adjusted for multiple-
test correction these Padj values are all greater than 0.05 (Fig. 3c).

To illustrate blocking, we simulate samples to have the same 
values as in Figure 3a but with half of the variance due to differ-
ences in cultures. These differences in cultures (block effect) are 
simulated as normal with mean μblk = 0 and variance σblk

2 = 1  
(Fig. 4a), and are added to each of the sample values using the 
complete randomized block design (Fig. 2c). The variance within 
a sample is thus evenly split between the block effect and the remain-
ing experimental error, which we presumably cannot partition fur-
ther. The contribution of the block effect to the deviations is shown 
in Figure 4b, now a substantial component of the variance in each 
sample, unlike in Figure 3b, where blocking was not accounted for.

Having isolated variation owing to cell-culture differences, we 
increased sensitivity in detecting a treatment effect because our 
estimate of within-group variance is lower. Now MSW = 1.1 and 
F = 5.5, which is significant at P = 0.024 and allows us to conclude 
that the treatment means are not all the same (Fig. 4c). By doing 
a post hoc pairwise comparison with the two-sample t-test, we 
can conclude that treatments A and C are different at an adjusted  
P = 0.022 (95% confidence interval (CI), 0.30–3.66) (Fig. 4c). We 
can calculate the F statistic for the blocking variable using F = MSblk/
MSW = 3.4 to determine whether blocking had a significant effect. 
Mathematically, the blocking variable has the same role in the analy-
sis as an experimental factor. Note that just because the blocking 
variable soaks up some of the variation we are not guaranteed great-
er sensitivity; in fact, because we estimate the block effect as well as 
the treatment effect, the within-group d.f. in the analysis is lower 
(e.g., changes from 15 to 10 in our case); our test may lose power if 
the blocks do not account for sufficient sample-to-sample variation.

Blocking increased the efficiency of our experiment. Without it, 
we would need nearly twice as large samples (n = 11) to reach the 
same power. The benefits of blocking should be weighed against any 
increase in associated costs and the decrease in d.f.: in some cases it 
may be more sensible to simply collect more data.

Note: Supplementary information is available in the online version of the paper 
(doi:10.1038/nmeth.3005). 
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Figure 4 | Including blocking isolates biological variation from the 
estimate of within-group variance and improves power. (a) Blocking is 
simulated by augmenting each sample (swit

2 = 1) with a fixed random 
component (µblk = 0, sblk

2 = 1). (b) Variance is partitioned to treatment, 
block (black lines) and within-group. (c) Summary statistics for treatment 
and block effects in the same format as Figure 3c. In the presence of 
a sufficiently large blocking effect, MSW is lowered and treatment test 
statistic F = MSB/MSW is increased. Smaller error bars on sample mean 
differences reflect reduced MSW.
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