SINGLE-CELL RECORDINGS

Norbert Fortin, PhD

Bio Sci 38: Mind, Memory, and the Brain

 Why do we need single-cell recordings? Pros and Cons of the approach

Using single-cell recordings to study memory and cognition

- Basic approach (rodents, monkeys and humans)
- Rodents (majority of literature)
- Humans (few studies)
- Using single-cell recordings to understand other brain systems and functions.
- Potential for medical breakthroughs

WHY DO WE NEED SINGLE CELL RECORDING TECHNIQUES? PROS AND CONS OF ELECTROPHYSIOLOGICAL METHODS

• Pros

- Direct measure of neural activity (e.g., spiking activity of individual neurons)
- High temporal resolution (ms level)
- Provides information about <u>how</u> a structure can support a specific type of memory

Cons

- Poor "coverage" from each electrode
 - Though large arrays of electrodes are now being used
- Intrusive
- Very challenging, time-consuming

*** No one method is ideal ***

WHY DO WE NEED SINGLE CELL RECORDING TECHNIQUES? REVIEW: SPATIAL AND TEMPORAL TRADE-OFFS

Huettel, Song, & McCarthy (2004)

 Why do we need single cell recordings? Pros and Cons of the approach

Using single-cell recordings to study memory and cognition

- Basic approach (rodents, monkeys and humans)
- Rodents (majority of literature)
- Humans (few studies)
- Using single-cell recordings to understand other brain systems and functions.
- Potential for medical breakthroughs

USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION BASIC APPROACH (IN RATS, BUT SIMILAR IN PRIMATES)

from Muller, Kubie and Ranck (1987)

Modern setup (i.e., my lab)

Modern high-density recording headstage

Connector and pre-amplifier

OWNELICS

 Control >24 tetrodes (groups of 4 wires) independently

- Ultra-compact, ultra-light
- Stable for months

Data collection hardware

USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION BASIC APPROACH (IN RATS, BUT SIMILAR IN PRIMATES)

Bundles of electrodes help discriminate different cells e.g., a tetrode is a bundle of 4 electrodes (recording wires)

Original report: O'Keefe and Dostrovsky, 1971

Cells showing place-specific activity are called <u>"place cells"</u> (since O'Keefe, 1976) USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION IN RATS HIPPOCAMPAL NEURONS ENCODE SPECIFIC LOCATIONS IN THE ENVIRONMENT

• A little more precise: Muller, Kubie and Ranck, 1987

More current: O'Keefe and Burgess, 1996

Firing rate: Red > yellow > green > blue

Top view of square environment

USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION IN RATS HIPPOCAMPAL NEURONS ENCODE SPECIFIC LOCATIONS IN THE ENVIRONMENT

- Latest technology
 - ~ 24-32 tetrodes in the hippocampus
 - Recording from > 40 cells at once

Hippocampal place cells recorded in the Wilson lab at MIT

USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION IN <u>RATS</u> HIPPOCAMPAL NEURONS ENCODE SPECIFIC LOCATIONS IN THE ENVIRONMENT

- These findings provide support for the "Cognitive Map theory"
 - The idea that the hippocampus builds a faithful map of the environment

We'll see later that this is not the full story

USING SINGLE CELL REC'S TO STUDY MEMORY & COGNITION IN RATS RECORDING FROM OTHER AREAS

What does this cell do?

accompanying demonstration for Fig. 1

Supplementary Movie S1a viewing session

Firing of a single entorhinal cortex neuron while watching short video episodes

(Original audiovisual movie clips are replaced by a textual description of the clip content)

Beeps represent single spikes

H. Gelbard-Sagiv, R. Mukamel, M. Harel, R. Malach, I. Fried, Science (2008)

- Why do we need single cell recordings? Pros and Cons of the approach
- Using single-cell recordings to study memory and cognition
 - Basic approach (rodents, monkeys and humans)
 - Rodents (majority of literature)
 - Humans (few studies)
- Using single-cell recordings to understand other brain systems and functions.
- Potential for medical breakthroughs

SINGLE CELL REC'S HELP US UNDERSTAND MANY BRAIN SYSTEMS AND FUNCTIONS

• e.g., what do neurons in the visual system do?

• "ON" cell in LGN (e.g., Hubel and Wiesel, 1959, 1962)

OVERVIEW

- Why do we need single cell recordings? Pros and Cons of the approach
- Using single-cell recordings to study memory and cognition
 - Basic approach (rodents, monkeys and humans)
 - Rodents (majority of literature)
 - Humans (few studies)
- Using single-cell recordings to understand other brain systems and functions.
- Potential for medical breakthroughs

SINGLE CELL REC'S MAY LEAD TO MEDICAL BREAKTHROUGHS E.G. NEURAL PROSTHETICS

Mind Control Monkey Moves Robot in Japan

DukeUniversityNews 196 videos Subscribe

Monkey's Thoughts Makes Robot Walk from Across the Globe

JANUARY 2008

SINGLE CELL REC'S MAY LEAD TO MEDICAL BREAKTHROUGHS E.G. NEURAL PROSTHETICS

Controlling an exoskeleton with your brain

Nicolelis lab, Duke University

http://www.theguardian.com/science/video/2014/apr/01/robotic-exoskeleton-world-cup-debut-video

SINGLE CELL REC'S MAY LEAD TO MEDICAL BREAKTHROUGHS E.G. NEURAL PROSTHETICS

For more details, check out Dr. Nicolelis' TED talk

Discover Attend

Participate About

Miguel Nicolelis:

Brain-to-brain communication has arrived. How we did it

TEDGlobal 2014 · 18:57 · Filmed Oct 2014

Watch

🖳 25 subtitle languages 🚱

View interactive transcript

https://www.ted.com/talks/ miguel_nicolelis_brain_to_brain_communication_has_arrived_how_we_did_it#t-923952

SINGLE CELL REC'S MAY LEAD TO MEDICAL BREAKTHROUGHS E.G. "RESET" OF ABNORMAL BRAIN ACTIVITY PATTERNS

Spinal Cord Stimulator Sparks Hope for Parkinson's Disease

DukeMedicine 143 videos 😒 Subscribe

