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Error bars commonly appear in fi gures 
in publications, but experimental 
biologists are often unsure how they 
should be used and interpreted. In this 
article we illustrate some basic features 
of error bars and explain how they can 
help communicate data and assist 
correct interpretation. Error bars may 
show confi dence intervals, standard 
errors, standard deviations, or other 
quantities. Different types of error bars 
give quite different information, and so 
fi gure legends must make clear what 
error bars represent. We suggest eight 
simple rules to assist with effective use 
and interpretation of error bars.

What are error bars for?
Journals that publish science—knowledge 
gained through repeated observation or 
experiment—don’t just present new 
conclusions, they also present evidence so 
readers can verify that the authors’ 
reasoning is correct. Figures with error bars 
can, if used properly (1–6), give information 
describing the data (descriptive statistics), 
or information about what conclusions, or 
inferences, are justi! ed (inferential 
statistics). These two basic categories of 
error bars are depicted in exactly the same 
way, but are actually fundamentally 
different. Our aim is to illustrate basic pro-
perties of ! gures with any of the common 
error bars, as summarized in Table I, and to 
explain how they should be used.

What do error bars tell you?
Descriptive error bars. Range 
and standard deviation (SD) are used for 
descriptive error bars because they show 
how the data are spread (Fig. 1). Range 

error bars encompass the lowest and high-
est values. SD is calculated by the formula

SD = 
( )X M

n
−
−

∑ 2

1

where X refers to the individual data 
points, M is the mean, and Σ (sigma) 
means add to ! nd the sum, for all the n 
data points. SD is, roughly, the average or 
typical difference between the data points 
and their mean, M. About two thirds of 
the data points will lie within the region 
of mean ± 1 SD, and #95% of the data 
points will be within 2 SD of the mean.

Descriptive error bars can also be 
used to see whether a single result ! ts 
within the normal range. For example, if 
you wished to see if a red blood cell count 
was normal, you could see whether it was 
within 2 SD of the mean of the population 
as a whole. Less than 5% of all red blood 
cell counts are more than 2 SD from the 
mean, so if the count in question is more 
than 2 SD from the mean, you might con-
sider it to be abnormal.

As you increase the size of your 
sample, or repeat the experiment more 
times, the mean of your results (M) will 
tend to get closer and closer to the true 
mean, or the mean of the whole popula-
tion, μ. We can use M as our best estimate 
of the unknown μ. Similarly, as you repeat 
an experiment more and more times, the 

SD of your results will tend to more and 
more closely approximate the true stan-
dard deviation (σ) that you would get if 
the experiment was performed an in! nite 
number of times, or on the whole popula-
tion. However, the SD of the experimental 
results will approximate to σ, whether n is 
large or small. Like M, SD does not change 
systematically as n changes, and we can 
use SD as our best estimate of the un-
known σ, whatever the value of n.
Inferential error bars. In experi-
mental biology it is more common to be 
interested in comparing samples from two 
groups, to see if they are different. For 
 example, you might be comparing wild-
type mice with mutant mice, or drug with 
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It is highly desirable to 
use larger n, to achieve 

narrower inferential 
error bars and more 

precise estimates of true 
population values.

Figure 1. Descriptive error bars. Means with er-
ror bars for three cases: n = 3, n = 10, and n = 
30. The small black dots are data points, and the 
column denotes the data mean M. The bars on 
the left of each column show range, and the bars 
on the right show standard deviation (SD). M and 
SD are the same for every case, but notice how 
much the range increases with n. Note also that 
although the range error bars encompass all of 
the experimental results, they do not necessarily 
cover all the results that could possibly occur. SD 
error bars include about two thirds of the sample, 
and 2 x SD error bars would encompass roughly 
95% of the sample.
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placebo, or experimental results with 
controls. To make inferences from the data 
(i.e., to make a judgment whether the 
groups are signi! cantly different, or 
whether the differences might just be due 
to random " uctuation or chance), a differ-
ent type of error bar can be used. These 
are standard error (SE) bars and con! -
dence intervals (CIs). The mean of the 
data, M, with SE or CI error bars, gives an 
indication of the region where you can ex-
pect the mean of the whole possible set of 
results, or the whole population, μ, to lie 

(Fig. 2). The interval de! nes the values 
that are most plausible for μ.

Because error bars can be descriptive 
or inferential, and could be any of the bars 
listed in Table I or even something else, 
they are meaningless, or misleading, if the 
! gure legend does not state what kind they 
are. This leads to the ! rst rule. Rule 1: 
when showing error bars, always describe 
in the ! gure legends what they are.

Statistical signifi cance tests 
and P values
If you carry out a statistical signi! cance 
test, the result is a P value, where P is the 
probability that, if there really is no differ-
ence, you would get, by chance, a differ-
ence as large as the one you observed, or 
even larger. Other things (e.g., sample 
size, variation) being equal, a larger differ-
ence in results gives a lower P value, 
which makes you suspect there is a true 
difference. By convention, if P < 0.05 you 
say the result is statistically signi! cant, 
and if P < 0.01 you say the result is highly 
signi! cant and you can be more con! dent 
you have found a true effect. As always 
with statistical inference, you may be 
wrong! Perhaps there really is no effect, 
and you had the bad luck to get one of the 
5% (if P < 0.05) or 1% (if P < 0.01) of 
sets of results that suggests a difference 
where there is none. Of course, even if re-
sults are statistically highly signi! cant, it 
does not mean they are necessarily bio-
logically important. It is also essential to 
note that if P > 0.05, and you therefore 
cannot conclude there is a statistically sig-
ni! cant effect, you may not conclude that 
the effect is zero. There may be a real ef-
fect, but it is small, or you may not have 

repeated your experiment often enough to 
reveal it. It is a common and serious error 
to conclude “no effect exists” just because 
P is greater than 0.05. If you measured the 
heights of three male and three female 
Biddelonian basketball players, and did 
not see a signi! cant difference, you could 
not conclude that sex has no relationship 
with height, as a larger sample size might 
reveal one. A big advantage of inferential 
error bars is that their length gives a 
graphic signal of how much uncertainty 
there is in the data: The true value of the 
mean μ we are estimating could plausibly 
be anywhere in the 95% CI. Wide inferen-
tial bars indicate large error; short inferen-
tial bars indicate high precision.

Replicates or independent 
samples—what is n?
Science typically copes with the wide vari-
ation that occurs in nature by measuring 
a number (n) of independently sampled 
individuals, independently conducted ex-
periments, or independent observations.

Rule 2: the value of n (i.e., the sam-
ple size, or the number of independently 
performed experiments) must be stated in 
the ! gure legend.

It is essential that n (the number of 
independent results) is carefully distin-
guished from the number of replicates, 

Figure 2. Confi dence intervals. Means and 
95% CIs for 20 independent sets of results, each 
of size n = 10, from a population with mean μ = 
40 (marked by the dotted line). In the long run we 
expect 95% of such CIs to capture μ; here 18 do 
so (large black dots) and 2 do not (open circles). 
Successive CIs vary considerably, not only in po-
sition relative to μ, but also in length. The varia-
tion from CI to CI would be less for larger sets of 
results, for example n = 30 or more, but varia-
tion in position and in CI length would be even 
greater for smaller samples, for example n = 3.

Figure 3. Inappropriate use of error bars. En-
zyme activity for MEFs showing mean + SD 
from duplicate samples from one of three repre-
sentative experiments. Values for wild-type vs. 
−/− MEFs were signifi cant for enzyme activity 
at the 3-h timepoint (P < 0.0005). This fi gure and 
its legend are typical, but illustrate inappropriate 
and misleading use of statistics because n = 1. 
The very low variation of the duplicate samples 
implies consistency of pipetting, but says nothing 
about whether the differences between the wild-
type and −/− MEFs are reproducible. In this 
case, the means and errors of the three experi-
ments should have been shown.

Table I. Common error bars

Error bar Type Description Formula

Range Descriptive Amount of spread between the 
extremes of the data

Highest data point minus 
the lowest

Standard deviation (SD) Descriptive Typical or (roughly speaking) 
average difference between the 
data points and their mean

SD = −
−

∑( )X M
n

2

1

Standard error (SE) Inferential A measure of how variable the 
mean will be, if you repeat the 
whole study many times

SE = SD/√n

Confi dence interval (CI), 
usually 95% CI

Inferential A range of values you can be 
95% confi dent contains the true 
mean

M ± t(n–1) × SE, where 
t(n–1) is a critical value of 
t. If n is 10 or more, the 
95% CI is approximately 
M ± 2 × SE.
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which refers to repetition of measurement 
on one individual in a single condition, or 
multiple measurements of the same or 
identical samples. Consider trying to de-
termine whether deletion of a gene in 
mice affects tail length. We could choose 
one mutant mouse and one wild type, and 
perform 20 replicate measurements of 
each of their tails. We could calculate the 
means, SDs, and SEs of the replicate mea-
surements, but these would not permit us 
to answer the central question of whether 
gene deletion affects tail length, because 
n would equal 1 for each genotype, no 
matter how often each tail was measured. 
To address the question successfully we 
must distinguish the possible effect of 
gene deletion from natural animal-to-
 animal variation, and to do this we need 
to measure the tail lengths of a number of 
mice, including several mutants and sev-
eral wild types, with n > 1 for each type.

Similarly, a number of replicate cell 
cultures can be made by pipetting the same 

volume of cells from the same stock culture 
into adjacent wells of a tissue culture plate, 
and subsequently treating them identically. 
Although it would be possible to assay the 
plate and determine the means and errors of 
the replicate wells, the errors would re" ect 
the accuracy of pipetting, not the reproduc-
iblity of the differences between the experi-
mental cells and the control cells. For 
replicates, n = 1, and it is therefore in-
appropriate to show error bars or statistics.

If an experiment involves triplicate 
cultures, and is repeated four independent 
times, then n = 4, not 3 or 12. The varia-
tion within each set of triplicates is related 
to the ! delity with which the replicates 
were created, and is irrelevant to the hy-
pothesis being tested.

To identify the appropriate value for 
n, think of what entire population is being 
sampled, or what the entire set of experi-
ments would be if all possible ones of that 
type were performed. Conclusions can be 
drawn only about that population, so make 
sure it is appropriate to the question the 
research is intended to answer.

In the example of replicate cultures 
from the one stock of cells, the population 
being sampled is the stock cell culture. 

For n to be greater than 1, the experiment 
would have to be performed using separate 
stock cultures, or separate cell clones of 
the same type. Again, consider the popula-
tion you wish to make inferences about—it 
is unlikely to be just a single stock culture. 
Whenever you see a ! gure with very small 
error bars (such as Fig. 3), you should ask 
yourself whether the very small variation 
implied by the error bars is due to analysis 
of replicates rather than independent sam-
ples. If so, the bars are useless for making 
the inference you are considering.

Sometimes a ! gure shows only the 
data for a representative experiment, imply-
ing that several other similar experiments 
were also conducted. If a representative ex-
periment is shown, then n = 1, and no error 
bars or P values should be shown. Instead, 
the means and errors of all the independent 
experiments should be given, where n is the 
number of experiments performed.

Rule 3: error bars and statistics 
should only be shown for independently 
repeated experiments, and never for repli-
cates. If a “representative” experiment is 
shown, it should not have error bars or 
P values, because in such an experiment, 
n = 1 (Fig. 3 shows what not to do).

Figure 4. Inferential error bars. Means with 
SE and 95% CI error bars for three cases, rang-
ing in size from n = 3 to n = 30, with descrip-
tive SD bars shown for comparison. The small 
black dots are data points, and the large dots 
 indicate the data mean M. For each case the 
 error bars on the left show SD, those in the mid-
dle show 95% CI, and those on the right show 
SE. Note that SD does not change, whereas the 
SE bars and CI both decrease as n gets larger. 
The ratio of CI to SE is the t statistic for that n, 
and changes with n. Values of t are shown at the 
bottom. For each case, we can be 95% confi -
dent that the 95% CI includes μ, the true mean. 
The likelihood that the SE bars capture μ varies 
depending on n, and is lower for n = 3 (for such 
low values of n, it is better to simply plot the data 
points rather than showing error bars, as we 
have done here for illustrative purposes).

Figure 5. Estimating statistical signifi cance using the overlap rule for SE bars. Here, SE bars are shown 
on two separate means, for control results C and experimental results E, when n is 3 (left) or n is 10 or 
more (right). “Gap” refers to the number of error bar arms that would fi t between the bottom of the error 
bars on the controls and the top of the bars on the experimental results; i.e., a gap of 2 means the 
distance between the C and E error bars is equal to twice the average of the SEs for the two samples. 
When n = 3, and double the length of the SE error bars just touch (i.e., the gap is 2 SEs), P is #0.05 
(we don’t recommend using error bars where n = 3 or some other very small value, but we include rules 
to help the reader interpret such fi gures, which are common in experimental biology).
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What type of error bar 
should be used?
Rule 4: because experimental biologists 
are usually trying to compare experimen-
tal results with controls, it is usually 
appropriate to show inferential error 
bars, such as SE or CI, rather than SD. 
However, if n is very small (for example 
n = 3), rather than showing error bars and 
statistics, it is better to simply plot the in-
dividual data points.

What is the difference 
between SE bars and CIs?
Standard error (SE). Suppose 
three experiments gave measurements of 
28.7, 38.7, and 52.6, which are the data 
points in the n = 3 case at the left in Fig. 1. 
The mean of the data is M = 40.0, and the 
SD = 12.0, which is the length of each 
arm of the SD bars. M (in this case 40.0) 
is the best estimate of the true mean μ that 
we would like to know. But how accurate 
an estimate is it? This can be shown by 
inferential error bars such as standard 
error (SE, sometimes referred to as the 
standard error of the mean, SEM) or a 
con! dence interval (CI). SE is de! ned as 
SE = SD/√n. In Fig. 4, the large dots 
mark the means of the same three samples 
as in Fig. 1. For the n = 3 case, SE = 

12.0/√3 = 6.93, and this is the length of 
each arm of the SE bars shown.

The SE varies inversely with the 
square root of n, so the more often an ex-
periment is repeated, or the more samples 
are measured, the smaller the SE becomes 
(Fig. 4). This allows more and more accu-
rate estimates of the true mean, μ, by the 
mean of the experimental results, M.

We illustrate and give rules for n = 3 
not because we recommend using such a 
small n, but because researchers currently 
often use such small n values and it is 
 necessary to be able to interpret their 
 papers. It is highly desirable to use larger 
n, to achieve narrower inferential error 
bars and more precise estimates of true 
population values.
Confi dence interval (CI). Fig. 2 il-
lustrates what happens if, hypothetically, 
20 different labs performed the same ex-
periments, with n = 10 in each case. The 
95% CI error bars are approximately M ± 
2xSE, and they vary in position because 
of course M varies from lab to lab, and 
they also vary in width because SE varies. 
Such error bars capture the true mean μ 
on #95% of occasions—in Fig. 2, the re-
sults from 18 out of the 20 labs happen to 
include μ. The trouble is in real life we 
don’t know μ, and we never know if our 

error bar interval is in the 95% majority 
and includes μ, or by bad luck is one of 
the 5% of cases that just misses μ.

The error bars in Fig. 2 are only ap-
proximately M ± 2xSE. They are in fact 
95% CIs, which are designed by statisti-
cians so in the long run exactly 95% will 
capture μ. To achieve this, the interval 
needs to be M ± t(n–1) ×SE, where t(n–1) is 
a critical value from tables of the t statis-
tic. This critical value varies with n. For 
n = 10 or more it is #2, but for small n it 
increases, and for n = 3 it is #4. There-
fore M ± 2xSE intervals are quite good 
approximations to 95% CIs when n is 10 
or more, but not for small n. CIs can be 
thought of as SE bars that have been ad-
justed by a factor (t) so they can be inter-
preted the same way, regardless of n.

This relation means you can easily 
swap in your mind’s eye between SE bars 
and 95% CIs. If a ! gure shows SE bars 
you can mentally double them in width, to 
get approximate 95% CIs, as long as n is 
10 or more. However, if n = 3, you need 
to multiply the SE bars by 4.

Rule 5: 95% CIs capture μ on 95% 
of occasions, so you can be 95% con! -
dent your interval includes μ. SE bars can 
be doubled in width to get the approxi-
mate 95% CI, provided n is 10 or more. If 
n = 3, SE bars must be multiplied by 4 to 
get the approximate 95% CI.

Determining CIs requires slightly 
more calculating by the authors of a pa-
per, but for people reading it, CIs make 
things easier to understand, as they mean 
the same thing regardless of n. For this 
reason, in medicine, CIs have been rec-
ommended for more than 20 years, and 
are required by many journals (7).

Fig. 4 illustrates the relation be-
tween SD, SE, and 95% CI. The data 
points are shown as dots to emphasize the 
different values of n (from 3 to 30). The 
leftmost error bars show SD, the same in 
each case. The middle error bars show 
95% CIs, and the bars on the right show 
SE bars—both these types of bars vary 
greatly with n, and are especially wide for 
small n. The ratio of CI/SE bar width is 
t(n–1); the values are shown at the bottom 
of the ! gure. Note also that, whatever er-
ror bars are shown, it can be helpful to the 
reader to show the individual data points, 
especially for small n, as in Figs. 1 and 4, 
and rule 4.

Figure 6. Estimating statistical signifi cance using the overlap rule for 95% CI bars. Here, 95% CI bars 
are shown on two separate means, for control results C and experimental results E, when n is 3 (left) 
or n is 10 or more (right). “Overlap” refers to the fraction of the average CI error bar arm, i.e., the 
 average of the control (C) and experimental (E) arms. When n ≥ 10, if CI error bars overlap by half 
the average arm length, P ≈ 0.05. If the tips of the error bars just touch, P ≈ 0.01.
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Using inferential intervals to 
compare groups
When comparing two sets of results, e.g., 
from n knock-out mice and n wild-type 
mice, you can compare the SE bars or the 
95% CIs on the two means (6). The smaller 
the overlap of bars, or the larger the gap 
between bars, the smaller the P value and 
the stronger the evidence for a true differ-
ence. As well as noting whether the ! gure 
shows SE bars or 95% CIs, it is vital to note 
n, because the rules giving approximate 
P are different for n = 3 and for n ≥ 10.

Fig. 5 illustrates the rules for SE bars. 
The panels on the right show what is needed 
when n ≥ 10: a gap equal to SE indicates 
P ≈ 0.05 and a gap of 2SE indicates P ≈ 
0.01. To assess the gap, use the average SE 
for the two groups, meaning the average of 
one arm of the group C bars and one arm of 
the E bars. However, if n = 3 (the number 
beloved of joke tellers, Snark hunters (8), 
and experimental biologists), the P value 
has to be estimated differently. In this case, 
P ≈ 0.05 if double the SE bars just touch, 
meaning a gap of 2 SE.

Rule 6: when n = 3, and double the 
SE bars don’t overlap, P < 0.05, and if 
double the SE bars just touch, P is close to 
0.05 (Fig. 5, leftmost panel). If n is 10 or 

Figure 7. Inferences between and within 
groups. Means and SE bars are shown for an 
experiment where the number of cells in three 
independent clonal experimental cell cultures (E) 
and three independent clonal control cell cultures 
(C) was measured over time. Error bars can be 
used to assess differences between groups at the 
same time point, for example by using an overlap 
rule to estimate P for E1 vs. C1, or E3 vs. C3; but 
the error bars shown here cannot be used to 
assess within group comparisons, for example 
the change from E1 to E2.

more, a gap of SE indicates P ≈ 0.05 and 
a gap of 2 SE indicates P ≈ 0.01 (Fig. 5, 
right panels).

Rule 5 states how SE bars relate to 
95% CIs. Combining that relation with 
rule 6 for SE bars gives the rules for 95% 
CIs, which are illustrated in Fig. 6. When 
n ≥ 10 (right panels), overlap of half of 
one arm indicates P ≈ 0.05, and just 
touching means P ≈ 0.01. To assess over-
lap, use the average of one arm of the 
group C interval and one arm of the E 
interval. If n = 3 (left panels), P ≈ 0.05 
when two arms entirely overlap so each 
mean is about lined up with the end of the 
other CI. If the overlap is 0.5, P ≈ 0.01.

Rule 7: with 95% CIs and n = 3, 
overlap of one full arm indicates P ≈ 
0.05, and overlap of half an arm indicates 
P ≈ 0.01 (Fig. 6, left panels).

Repeated measurements 
of the same group
The rules illustrated in Figs. 5 and 6 apply 
when the means are independent. If two 
measurements are correlated, as for ex-
ample with tests at different times on the 
same group of animals, or kinetic mea-
surements of the same cultures or reac-
tions, the CIs (or SEs) do not give the 
information needed to assess the signi! -
cance of the differences between means 
of the same group at different times be-
cause they are not sensitive to correlations 
within the group. Consider the example in 
Fig. 7, in which groups of independent 
experimental and control cell cultures are 
each measured at four times. Error bars 
can only be used to compare the experi-
mental to control groups at any one time 
point. Whether the error bars are 95% CIs 
or SE bars, they can only be used to assess 
between group differences (e.g., E1 vs. 
C1, E3 vs. C3), and may not be used to 
assess within group differences, such as 
E1 vs. E2.

Assessing a within group difference, 
for example E1 vs. E2, requires an analy-
sis that takes account of the within group 
correlation, for example a Wilcoxon or 
paired t analysis. A graphical approach 
would require ! nding the E1 vs. E2 dif-
ference for each culture (or animal) in the 
group, then graphing the single mean of 
those differences, with error bars that are 
the SE or 95% CI calculated from those 
differences. If that 95% CI does not in-

clude 0, there is a statistically signi! cant 
difference (P < 0.05) between E1 and E2.

Rule 8: in the case of repeated mea-
surements on the same group (e.g., of ani-
mals, individuals, cultures, or reactions), 
CIs or SE bars are irrelevant to compari-
sons within the same group (Fig. 7).

Conclusion
Error bars can be valuable for understand-
ing results in a journal article and decid-
ing whether the authors’ conclusions are 
justi! ed by the data. However, there are 
pitfalls. When ! rst seeing a ! gure with er-
ror bars, ask yourself, “What is n? Are 
they independent experiments, or just rep-
licates?” and, “What kind of error bars are 
they?” If the ! gure legend gives you satis-
factory answers to these questions, you 
can interpret the data, but remember that 
error bars and other statistics can only be 
a guide: you also need to use your biolog-
ical understanding to appreciate the mean-
ing of the numbers shown in any ! gure.
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