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Abstract— In this paper, we propose a novel regularized
mixture model for clustering matrix-valued image data. The
new framework introduces a sparsity structure (e.g., low rank,
spatial sparsity) and separable covariance structure motivated
by scientific interpretability. We formulate the problem as a fi-
nite mixture model of matrix-normal distributions with regular-
ization terms, and then develop an Expectation-Maximization-
type of algorithm for efficient computation. Simulation results
and analysis on brain signals show the excellent performance of
the proposed method in terms of a better prediction accuracy
than the competitors and the scientific interpretability of the
solution.

I. INTRODUCTION
High volume data sets with complex structures have been

widely studied in many fields such as genetics, medicine
and transportation (see [1], [2], [3], [4], [5], [6]). Among
them, matrix-valued data is commonly encountered in brain
images and signals, where the sampling unit can be viewed
as a two-dimensional array (i.e., matrix), for example, elec-
troencephalography (EEG) [7], [8], functional magnetic res-
onance imaging (fMRI) and local field potentials (LFPs) [9].
These signals are in general high-dimensional and possess
complicated structure such as spatial/temporal correlation,
low rankness and sparsity. The main goal of this paper is to
provide a novel approach for clustering matrix-valued data
while taking their complex structure into account.

Clustering is an important problem to understand brain
function and responses to shocks and stimuli. One key
motivation for this paper is the non-spatial working mem-
ory experiment conducted by co-author Fortin to study the
neuronal learning process on the sequential ordering of odors
[10]. Their groundbreaking discovery of temporal coding by
the hippocampal neurons extends our basic understanding
of the episodic memory neurobiology and thus provides
cross-species foundations for clarifying the underlying neural
mechanism in memory impairments. Throughout the ex-
periment, series of five odors (denoted as ABCDE) were
presented to rats from the same odor port. Each odor
presentation was initiated by a nose poke. Rats were tested
to correctly identify whether sequence of odor presentation
was correct (ABCDE) or incorrect (e.g., AABDE, ABCDD,
etc) by holding their nose in the port until the signal or with-
drawing before the signal, respectively. LFPs were recorded
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from twelve microelectrodes that were implanted into rats’
cortex. Due to the high dimensionality and complexity of the
dataset, the biggest challenge lies in understanding features
in LFP signals that are associated with neural mechanism in
developing sequential odor memory.

Figure 1 presents the smoothed LFPs across 12 microelec-
trodes and the associated mean signals for five odors and the
whole ABCDE sequence. It is clear that the mean patterns
vary dramatically across different sequences, and there is
a strong spatial dependence as we compare the signals
among different electrodes within each odor. In particular,
two “paradigm” can be found across electrodes for odors
A, B and D by a rough visual inspection. Therefore a
clustering analysis in this study will be helpful to reveal
the latent patterns/structure in LFP and hence provide more
insights on their connections to different odors. In this paper,
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Fig. 1. The mean LFPs across different odors.

we focus on using finite mixture models for clustering
purpose because statistical inference can be carried out in
a convenient way and the results have a nice probabilistic
interpretation. Existing approaches based on mixture models
are not directly applicable for matrix data since the set of
input covariates are treated as a vector, where the matrix
structure and its interpretability are not taken into account.
Moreover, by vectorizing a matrix, the resulting dimension
of the input space can be extremely large, i.e., a pˆq matrix
will be converted to a pq-dimensional vector, which creates
additional challenges in computation and theory.

To solve the aforementioned issues, we propose a novel
penalized mixture model for clustering the matrix-valued
data. Each mixture is represented by a matrix normal dis-
tribution, whose covariance matrix can be factorized into
the Knocker product of two separate column and row co-
variance matrices [11], [12]. This representation provides
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both computational convenience and practical interpretation
as it separates the variations according to time and spatial
domains. In addition, we consider a penalization approach
equipped with three different norms (i.e., `1, `2 and the
nuclear norm) as they may suit for different image structure
regularization purpose. For example, the use of nuclear norm
provides a useful low-rank approximation of the true image
[13], and the use of `1-norm is helpful for detecting image
boundaries [14]. Numerically, we introduce a new EM-
type of algorithm that allows efficient computation for all
three penalization norms and provide stable and interpretable
results.

II. METHOD

A. Matrix normal distribution

We give a brief review of matrix normal distribution. A
rˆ p random matrix Y follows a matrix normal distribution
with mean M and covariance matrices U and V , denoted by
MNr,ppM,U, V q, if its density function is

fpY |M,U, V q “
expp´ 1

2 trpV ´1pY ´MqTU´1pY ´Mqq

p2πqrp{2|V |r{2|U |p{2
,

(1)
where M P Rrˆp, U P Rrˆr, V P Rpˆp and matrices U and
V are treated as between- and within-covariance matrices. In
[15], a equivalent definition of (1) is given by

vecpY q „ NpvecpMq, V b Uq, (2)

where vec is the column vectorization operation and b is
the Kronecker product.

Statistical inference for the matrix normal distribution is
usually conducted via the likelihood function. One can utilize
iterative algorithm to obtain estimates of covariance matrices
as summarized in Algorithm 1.

Algorithm 1 The MLE of covariance matrices
Input: Y “ tY1, Y2, ¨ ¨ ¨ , Ynu, τ (tolerance level), Max-iter
Initializing: iter “ 0, U0 “ Irˆr, V0 “

1
nr

řn
i“1pYi ´

Ȳ q1U0
´1
pYi ´ Ȳ q

U1 “
1
np

řn
i“1pYi ´ Ȳ qV0

´1
pYi ´ Ȳ q

1, V1 “
1
nr

řn
i“1pYi ´

Ȳ q1U1
´1
pYi ´ Ȳ q

While (iter ă Max-iter or }U1´U0}F ą τ or }V1´V0}F ą

τ )
Repeat
U0 :“ U1

V0 :“ V1

U1 “
1
np

řn
i“1pYi ´ Ȳ qV0

´1
pYi ´ Ȳ q

T

V1 “
1
nr

řn
i“1pYi ´ Ȳ q

TU1
´1
pYi ´ Ȳ q

iter :“ iter` 1
Return: Û :“ U1, V̂ :“ V1

B. Matrix-normal mixture model

We consider a matrix normal mixture model and its
inference using EM algorithm. Given i.i.d. observations
Y1, ¨ ¨ ¨ , Yn from a mixture of K matrix normal distributions,
each indexed by Θj “ pMj , Uj , Vjq, and the weights

π1, . . . , πK that belong to a K-dimensional simplex, denoted
by ∆K . Then the mixture density can be written as

K
ÿ

k“1

πkfpY |Θkq “

K
ÿ

k“1

πkMNpMk, Uk, Vkq, (3)

where f defined by (1). We use Θ “

pΘ1, . . . ,ΘK ;π1, . . . , πKq to denote the collection of
parameters in (3). Then the log-likelihood function is

`obspΘq “
n
ÿ

i“1

log

#

K
ÿ

j“1

πjfpYi|Θjq

+

. (4)

We can employ Expectation Maximization (EM) algorithm
to obtain the estimates of parameter.

In the E-step, the posterior probability of observation Yi
belongs to the j-th cluster is obtained by Bayes Theorem as
follows,

αij “
πjfpYi|Θjq

K
ř

l“1

πlfpYi|Θlq

. (5)

In the M-step, the estimates of the parameter vector are
obtained by solving the non-constraint optimization problem

pΘj “ arg max
Θj

n
ÿ

i“1

K
ÿ

j“1

αij logtπjfpYi|Θjqu

By some algebra, we have

π̂j “

řn
i“1 αij
n

, xMj “

řn
i“1 αijYi
n
ř

i“1

αij

,

pUj “

řn
i“1 αijpYi ´

xMjqpV
´1
j pYi ´ xMjq

1

p
n
ř

i“1

αij

,

pVj “

řn
i“1 αijpYi ´

xMjq
1
pU´1
j pYi ´ xMjq

r
n
ř

i“1

αij

.

(6)

Note that pUj and pVj , j “ 1, . . . , k can be obtained numeri-
cally using the similar method to Algorithm 1.

C. Penalized matrix normal mixture model

Mixture of matrix normal model has been discussed by
[16] for classifying three-way array data. However, for many
imaging studies, there is a underlying spatial (matrix) struc-
ture that needs to be taken into account (see the motivating
example in Section 1). Such structure can be effectively
modeled by the use of penalty functions on the mean matrix
signals, such as the low-rank approximation [13] or total-
variation-norm-based penalization [14]. In this paper, we
propose a penalized approach by including a penalization
term on the means of each mixture component in the
matrix normal mixture model. The penalty function takes
the form of `1, `2, or nuclear norms of the mean matrices
M1, . . . ,Mk. The choice of the penalty function depends on
the domain knowledge such as sparsity, smoothness and low
rankness for the mean structure of each cluster [17], which
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gives the results that are more easily interpretable and also
eases the computational burden. Specifically, we consider the
penalized log-likelihood function

QpΘ;λq “
n
ÿ

i“1

log

#

K
ÿ

j“1

πjfpYi|Θjq

+

´ λ
K
ÿ

j“1

P pMjq, (7)

where P p¨q is some penalty function, such as `1, `2, and
nuclear norms, and λ ě 0 is the tuning parameter.

Similar to Section II-B, we propose a modified EM
algorithm to estimate the parameters. The E-step proceeds
in the same way as Equation (5). The M-step boils down to
solving an optimization problem,

pΘ “ arg max
Θ

n
ÿ

i“1

K
ÿ

j“1

αij logtπjfpYi|Θjqu ´ λ
K
ÿ

j“1

P pMjq.

(8)
Note that the solution Θ̂ may not have an explicit form.
[18] proposed a gradient method related to EM algorithm. It
replaces the M-step by conducting one iteration of Newton’s
method. Alternative approaches, such as surrogate functions
[19] and overrelaxed EM algorithm [20] have also been
introduced in the literature.

In this article, we mainly focus on three types of penalties:
`1, `2 and nuclear norms. For `1 and `2-penalty, the norms
are defined on the vectorized matrix means Mj , and for
the nuclear norm penalty, it is defined as the sum of sin-
gular values of Mj . [21] introduced `1-penalty to the mean
parameters for mixture of univariate normal models. They
obtained an explicit solution for the M-step using a sub-
gradient approach. [17] developed the “one-step-late” (OSL)
algorithm that can be applied to more general case. Inspired
by the aforementioned results, we develop a sub-gradient
approach when `1-norm is used and an OSL approach for `2
and nuclear norms.

For the `1-norm penalty, following a similar derivation by
[21], Mj can be updated by

M̂j “ signpM̃jq

ˆ

|M̃j | ´
λ

řn
i“1 αi,j

Ui1rˆpVi

˙

`

, (9)

where j “ 1, . . . ,K, M̃j “

řn
i“1 αi,jYi
řn

i“1 αi,j
is the update for Mi

without penalty, B` “ maxpB, 0q, 1rˆp is a matrix of all
1’s, and sign() and p.q` are all component-wise operators.

For the `2 norm penalty, the objective function is derived
to be

Q`2pπ,Θq “
n
ÿ

i“1

k
ÿ

j“1

αij logtπjfpYi|Θjqu ´ λ
k
ÿ

j“1

}Mj}2.

After some calculation, we have

BQ`2pπ,Θq

BMj
“ U´1

j

n
ÿ

i“1

αi,jpYi ´MjqV
´1
j ´ 2λMj .

Therefore Mj can be updated by

M̂j “ M̃j ´
2λ

řn
i“1 αij

UjMjVj , (10)

where Uj ,Mj , Vj are the updates from the previous step.

For the nuclear norm penalty, similar derivation yields

M̂j “ M̃j ´
λ

řn
i“1 αij

UjΦjΩ
T
j Vj , (11)

where Mj has the singular value decomposition Mj “

ΦjΛjΩ
T
j .

In summary, the proposed estimation procedure involves
algorithms of initialization and alternating from E-step and
M-step. Here we provide more details.
I. (Initialization) We start with vectorizing the original
matrix-valued observations Y1, ¨ ¨ ¨ , Yn and apply K-means
to achieve the initial cluster membership values, written as
S1, ¨ ¨ ¨ , SK , where Sj “ ti | Yi in j-th clusteru. Note that
we consider alternative methods to K-means in this step,
for example, by randomly assign observations to different
clusters. Then for each cluster, the initial value of Θi can be
obtained following the same manner as in Section II-A, and
πj can be directly estimated by π̂j “ |Sj |{n.
II. (E-step) We update the posterior membership by

αij “
πjfpYi|Θjq

k
ř

l“1

πlfpYi|Θlq

.

III. (M-step) The estimate of the mean parameter Mj with
respect to various penalties is updated by Equations (9), (10)
and (11) respectively. Updates of the estimates of πj , Uj , Vj
follow Equation (6) and Algorithm 1.
IV. (Stopping criteria) Repeat II. and III. until certain
number of iterations have been reached or the Frobenius
norm change of the estimate of the mean parameter Mj

between consecutive iterates is below some pre-specified
cutoff.

Choosing the number of clusters A key question in mix-
ture models is to determine the number of clusters. Inspired
by [22], we consider a predictive criteria by adopting the
cross validated penalized likelihood (CVPL) as the key mea-
sure. We split the dataset Y “ tY1, ¨ ¨ ¨ , Ynu into training
and testing groups denoted by Ytrain,Ytest, and then fit a k-
mixture model on Ytrain and use the estimated parameters
to obtain the penalized log-likelihood function on Ytest,
denoted by QpYtest | Ytrain, kq. One nice property of the
CVPL is that its expectation is the Kullback-Leibler (KL)
divergence between the true penalized likelihood function
and the k-mixture penalized likelihood plus some constant.
Given this measure, we can define CVPL by first dividing
Y “ pY 1, . . . ,Y Lq equally into L parts randomly, and then
consider

QpL, kq “ L´1
L
ÿ

l“1

QpY l | Y ´l, kq,

where Y ´l is the data Y excluding Y l. We choose the
number of clusters k such that QpL, kq is maximized. We
will give more details for the calculation in the Simulation
study.
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III. SIMULATIONS

We first evaluate whether the proposed CVPL approach is
able to identify the correct number of clusters under different
scenarios. We generate a mixture of two matrix normal
distributions with equal proportions and mean structures of
Crossing [23] and Rectangular. The row-wise and column-
wise covariance matrices follow an autoregressive setting
where covtYk1,l1 , Yk2,l2u “ 0.9|k1´k2|`|l1´l2|, 1 ď ki ď
r, 1 ď li ď p. In Scenario I, we set the sample size n “ 100
and r “ p “ 60. In Scenario II, we let n “ 50, r “ p “ 30.

We applied the proposed method with `1, `2 and Nuclear
penalties and summarized the results based on 200 simula-
tions in Table I. It can be seen that the proposed method
manages to choose the true number of cluster (k “ 2) under
all cases. Note that `2 and nuclear norm penalties seem to
work better than that of `1 here. This is expected because the
true mean structure has low rank but not entry-wise sparse
mean structure.

TABLE I
THE CROSS VALIDATED PENALIZED LIKELIHOOD (CVPL) VALUES

OBTAINED FROM DIFFERENT NUMBER OF CLUSTERS AND PENALTIES

UNDER TWO SCENARIOS.

Penalty λ
CVPL (Scenario I) CVPL (Scenario II)

k “ 2 k “ 3 k “ 4 k “ 2 k “ 3 k “ 4

`1

0.5 2.345˚ 2.337 2.333 0.458˚ 0.453 0.451

1 2.344˚ 2.336 2.330 0.457˚ 0.455 0.452

1.5 2.341˚ 2.337 2.332 0.458˚ 0.457 0.455

`2

0.5 2.351˚ 2.349 2.344 0.462˚ 0.449 0.431

1 2.352˚ 2.350 2.345 0.450˚ 0.434 0.419

1.5 2.352˚ 2.349 2.344 0.446˚ 0.429 0.413

Nuclear
0.5 2.351˚ 2.348 2.343 0.461˚ 0.456 0.452

1 2.351˚ 2.348 2.344 0.461˚ 0.457 0.452

1.5 2.353˚ 2.349 2.345 0.460˚ 0.456 0.454

* The highest values across different scenarios (ˆ105)

We then compare the performance of the proposed ap-
proach with that of K-means. We generate signals using
the same mean and covariance as in the previous section
except that we set n “ 50 and r “ p “ 20 in Scenario
III, and n “ 100 and p “ r “ 60 in Scenario IV. For
K-means, we set the number of clusters at the true value
(2 in our case). To evaluate the performance, we calculate
the adjusted random index (ARI) [24], which is a number
that has a maximum value of 1 and measures the agreement
between two clustering solutions and works well even when
the partitions compared have different numbers of clusters.
In addition, we consider the prediction accuracy for both
methods and summarize the results based on 200 replications
in Table II. In Scenario III, where the sample size is relatively
small, the benefit of the proposed method is significant
compared to K means in terms of both ARI and prediction
accuracy for different choices of penalty norms and the
tuning parameter λ. This is expected because K-means does
not take the matrix structure into account. For Scenario IV,
as the dimension of image increases, the prediction accuracy
becomes worse. Still our method works better than K-means.

The performance of our method in general becomes better
as the tuning parameter λ increases, which suggests that
regularization helps improve the clustering performance in
this case.

TABLE II
THE ADJUSTED RANDOM INDEX (ARI) AND ACCURACY OBTAINED

FROM THE PROPOSED METHOD AND K MEANS UNDER SCENARIO III
AND IV.

Penalty λ
ARI (Scenario III) Accuracy ARI (Scenario IV) Accuracy

our method kmeans our method kmeans our method kmeans our method kmeans

`1

0 0.867

0.513

0.882

0.626

0.644

0.517

0.696

0.6070.5 0.924 0.938 0.691 0.744

1 0.962 0.980 0.781 0.822

1.5 0.966 0.985 0.788 0.824

`2
0.5 0.879 0.892 0.632 0.687

1 0.907 0.513 0.918 0.626 0.665 0.517 0.715 0.607

1.5 0.868 0.881 0.788 0.824

Nuclear
0.5 0.898 0.909 0.645 0.697

1 0.860 0.513 0.876 0.626 0.660 0.517 0.710 0.607

1.5 0.884 0.897 0.636 0.687

IV. ANALYSIS OF ODOR MEMORY DATA

In this section, we apply the developed methodology to
analyze a LFP dataset obtained from a memory coding
experiment on non-spatial events [10]. In that experiment,
rats were trained to identify a series of five odors during the
experiment. For most of the cases, those five odors were in
the same sequence (“in-sequence” odors) while there were
some violations (“out-sequence” odors). For example, odor
sequence ABCDE is an “in-sequence” odor yet ABBDE is
an “out-sequence” odor. Rats were required to poke and
hold their nose in the port to correctly identify whether
the odors were “in” or “out” sequence. Throughout the
experiment, spike and LFP data were collected based on 12
microelectrodes exhibiting task-critical single-cell activity.
The LFP dataset contains 247 trials with a sampling rate
of 1000 Hertz and T “ 2000 time points. Figure 2 gives a
snapshot of the LFP signals across 12 electrodes.
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Fig. 2. Time series plot of LFP signals across 12 electrodes in trial 1. The
plot only presents the first 500 time points.

A. Time Domain Analysis on Imaging Clustering

As an initial step, we focused on time domain to study the
association between raw multi-microelectrode signals with
“in-sequence” or “out-sequence” patterns. We implemented
the proposed method to the raw LFP signals across all

600



the 247 trials. Table III summarizes the cross validated
penalized likelihood (CVPL) values among different number
of clusters and penalties. It is obvious that our method
manages to choose the correct number of clusters (2) with
the highest CVPL values for all penalty norms. Moreover,
our method has a significantly higher adjusted random index
(ARI) value compared with K-means, which suggests that
the proposed method has desired performance in detecting
the latent structure representing “in” or “out” sequences.

TABLE III
ODOR MEMORY STUDY (TIME DOMAIN): THE CROSS VALIDATED

PENALIZED LIKELIHOOD (CVPL) AND ADJUSTED RANDOM INDEX

(ARI) VALUES FOR DIFFERENT NUMBER OF CLUSTERS AND PENALTIES.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 our method K means

`1

0 1.290* 1.285 1.281 0.768

0.5 1.253* 1.253* 1.246 0.786
0.4991 1.243* 1.206 1.204 0.768

1.5 1.249* 1.234 1.218 0.780

`2

0.5 1.302* 1.107 1.240 0.768

1 1.301* 1.027 1.202 0.774 0.499

1.5 1.298* 1.189 1.235 0.756

Nuclear
0.5 1.309* 1.299 1.274 0.756

1 1.299* 1.287 1.277 0.733 0.499

1.5 1.290* 1.286 1.214 0.711

* The highest CVPL value (ˆ105).

As a further step, researchers are also interested in un-
derstanding how LFP signals are related to rat’s ability
to correctly identify the odor sequence in this experiment.
Due to the small sample size of the out-sequence trials,
we only focus on those in-sequence trials. In other words,
we focus on the “sensitivity” (true positive rate) of the
experiment. Table IV summarizes the CVPL and ARI values.
For different values of the penalty and λ, the proposed
method manages to capture K “ 2 clusters for most of the
time. The ARI values are much higher from our method
compared with K-means.

TABLE IV
ODOR MEMORY STUDY (TIME DOMAIN): THE CROSS VALIDATED

PENALIZED LIKELIHOOD (CVPL) AND ADJUSTED RANDOM INDEX

(ARI) VALUES OBTAINED BASED ON THE IN-SEQUENCE TRIALS.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 k “ 5 our method K means

`1

0 1.135* 1.135* 1.126 1.131 0.762

0.5060.5 1.103* 1.076 1.084 1.094* 0.783

1 1.099* 1.070 1.077 1.136* 0.783

1.5 1.107* 1.1078 1.118* 1.068 0.609

`2

0.5 1.142* 1.139 0.885 1.144* 0.769

1 1.139* 1.016 1.101* 0.986 0.743 0.506

1.5 1.150* 0.865 1.016 1.061* 0.762

Nuclear
0.5 1.159* 1.125 1.119 1.126* 0.769

1 1.153* 1.116 1.136* 1.105 0.756 0.506

1.5 1.141* 1.142* 1.036 1.123 0.783

* The top two CVPL values (ˆ105).

B. Time Frequency Clustering Analysis

Next we study the latent structure from a time-frequency
perspective. [10] suggests that two particular oscillatory
bands (theta: 4 - 12 Hertz and slow gamma: 20 - 40 Hertz)
yield strong power and play significant roles in detecting the
in/out sequences. Figure 3 shows the time-frequency plot
suggests that the low frequency theta band obtains much
more power than the slow gamma band. We applied the
proposed method to the spectrum of theta and slow gamma
bands separately. Table V presents the results for the number
of clusters and the ARI that compares with the true odor
sequence for the theta band. The results seem to prefer a
large number of clusters (e.g. 5), which may be explained
by the fact that there are a total of 5 odors. Our approach
provides some evidence indicating the association between
the low frequency band (Theta) and the odor sequence. The
method was applied to the slow gamma band and produced
similar results.

Slow gamma

Theta

0.00 0.25 0.50 0.75 1.00

Rescaled time

F
r
e
q
u
e
n
c
y
 b

a
n
d

Fig. 3. The time frequency plot of Theta and Slow Gamma bands over
the “in-sequence” trials.

TABLE V
ODOR MEMORY STUDY (TIME-FREQUENCY DOMAIN): THE CROSS

VALIDATED PENALIZED LIKELIHOOD (CVPL) AND ADJUSTED RANDOM

INDEX (ARI) VALUES OBTAINED FROM THE “IN-SEQUENCE” TRIALS

BASED ON THE THETA BAND.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 k “ 5 our method K means

`1

0 11.001 11.300* 11.198* 11.172 0.712

0.6790.5 8.516 8.975* 8.849 8.997* 0.692

1 8.650 8.632 8.725* 8.745* 0.703

1.5 8.571 8.705* 8.556 8.701* 0.709

`2

0.5 8.965* 8.881* 8.671 7.277 0.693
0.6791 8.719* 8.388 8.544* 7.616 0.686

1.5 8.650 8.632 8.825* 8.745* 0.682

Nuclear
0.5 9.034 9.196* 9.183 9.259* 0.707

0.6791 9.013 9.166 9.255* 9.263* 0.714

1.5 8.571 9.040* 8.995* 8.969 0.712

* The top two highest values (ˆ103).
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V. CONCLUDING REMARKS

In this paper, we proposed a regularized probabilistic
clustering framework to analyze matrix data. Compared to
the existing approaches such as K-means, the advantages are
as follows: (1.) By working directly on matrices, we are
able to capture the row-wise and column-wise correlation
simultaneously; (2.) By introducing penalty terms into the
likelihood function, the proposed framework has the ability
to uncover the nature sparsity that are inherent to the signals
and images; (3.) The proposed approach is grounded on theo-
retical foundations; provides straightforward interpretability;
and has low computational cost and hence amenable to big
datasets.

Although this paper provides some promising results, there
remain many open problems that are encountered when
analyzing matrix data. For instance, in the current work,
choosing the number of clusters rely on some pre-specified
measures (CVPL). As an extension, one could introduce a
Bayesian framework into the clustering analysis and thus
incorporate a more data-driven and interpretable optimal
number of clusters.
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