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Flexible Bayesian Dynamic Modeling of
Correlation and Covariance Matrices

Shiwei Lan∗,∗∗, Andrew Holbrook†, Gabriel A. Elias‡, Norbert J. Fortin§,
Hernando Ombao¶, and Babak Shahbaba‖

Abstract. Modeling correlation (and covariance) matrices can be challenging due
to the positive-definiteness constraint and potential high-dimensionality. Our ap-
proach is to decompose the covariance matrix into the correlation and variance
matrices and propose a novel Bayesian framework based on modeling the correla-
tions as products of unit vectors. By specifying a wide range of distributions on
a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces
flexible prior distributions for covariance matrices (that go beyond the commonly
used inverse-Wishart prior). For modeling real-life spatio-temporal processes with
complex dependence structures, we extend our method to dynamic cases and
introduce unit-vector Gaussian process priors in order to capture the evolution
of correlation among components of a multivariate time series. To handle the
intractability of the resulting posterior, we introduce the adaptive Δ-Spherical
Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our pro-
posed framework in a simulation study of periodic processes and an analysis of
rat’s local field potential activity in a complex sequence memory task.

Keywords: dynamic covariance modeling, spatio-temporal models, geometric
methods, posterior contraction, Δ-Spherical Hamiltonian Monte Carlo.

1 Introduction

Modeling covariance matrices—or more broadly, positive definite (PD) matrices—is one
of the most fundamental problems in statistics. In general, the task is difficult because
the number of parameters grows quadratically with the dimension of the matrices. The
complexity of the challenge increases substantially if we allow dependencies to vary
over time (or space) in order to account for the dynamic (non-stationary) nature of
the underlying probability model. In this paper, we propose a novel solution to the
problem by developing a flexible and yet computationally efficient Bayesian inferential
framework for both static and dynamic covariance matrices.
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This work is motivated by modeling the dynamic brain connectivity (i.e., associations
between brain activity at different regions). In light of recent technical advances that al-
low the collection of large, multidimensional neural activity datasets, brain connectivity
analyses are emerging as critical tools in neuroscience research. Specifically, the devel-
opment of such analytical tools will help elucidate fundamental mechanisms underlying
cognitive processes such as learning and memory, and identify potential biomarkers for
early detection of neurological disorders. There are a number of new methods that have
been developed (Cribben et al., 2012; Fiecas and Ombao, 2016; Lindquist et al., 2014;
Ting et al., 2015; Prado, 2013) but the main limitation of these methods (especially
the ones that have a frequentist approach) is a lack of natural framework for inference.
Moreover, parametric approaches (e.g. vector auto-regressive models) need to be tested
for adequacy for modeling complex brain processes and often have high dimensional
parameter spaces (especially with a large number of channels and high lag order). This
work provides both a nonparametric Bayesian model and an efficient inferential method
for modeling the complex dynamic dependence among multiple stochastic processes that
is common in the study of brain connectivity.

Within the Bayesian framework, it is common to use an inverse-Wishart prior on the
covariance matrix for computational convenience (Mardia et al., 1980; Anderson, 2003).
This choice of prior however is very restrictive (e.g. common degrees of freedom for all
components of variance) (Barnard et al., 2000; Tokuda et al., 2011). Daniels (1999);
Daniels and Kass (2001) propose uniform shrinkage priors. Daniels and Kass (1999)
discuss three hierarchical priors to generalize the inverse-Wishart prior. Alternatively,
one may use decomposition strategies for more flexible modeling choices (see Barnard
et al. (2000) for more details). For instance, Banfield and Raftery (1993), Yang and
Berger (1994), Celeux and Govaert (1995), Leonard and Hsu (1992), Chiu et al. (1996),
and Bensmail et al. (1997) propose methods based on the spectral decomposition of
the covariance matrix. Another strategy is to use the Cholesky decomposition of the
covariance matrix or its inverse, e.g., Pourahmadi (1999, 2000); Liu (1993); Pinheiro
and Bates (1996). There are other approaches directly related to correlation, including
the constrained model based on truncated distributions (Liechty, 2004), the Cholesky
decomposition of correlation matrix using an angular parametrization (Pourahmadi and
Wang, 2015), and methods based on partial autocorrelation and parametrizations using
angles (Rapisarda et al., 2007). In general, these methods fail to yield full flexibility and
generality; and often sacrifice statistical interpretability.

While our proposed method in this paper is also based on the separation strategy
(Barnard et al., 2000) and the Cholesky decomposition, the main distinction from the
existing methods is that it represents each entry of the correlation matrix as a product of
unit vectors. This in turn provides a flexible framework for modeling covariance matrices
without sacrificing interpretability. Additionally, this framework can be easily extended
to dynamic settings in order to model real-life spatio-temporal processes with complex
dependence structures that evolve over the course of the experiment.

To address the constraint for correlation processes (positive definite matrix at each
time having unit diagonals and off-diagonal entries with magnitudes no greater than 1),
we introduce unit-vector Gaussian process priors. There are other related works, e.g.
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generalized Wishart process (Wilson and Ghahramani, 2011), and latent factor process
(Fox and Dunson, 2015), that explore the product of vector Gaussian processes. In gen-
eral they do not grant full flexibility in simultaneously modeling the mean, variance
and correlation processes. For example, latent factor based models link the mean and
covariance processes through a loading matrix, which is restrictive and undesirable if
the linear link is not appropriate, and thus are outperformed by our proposed flexible
framework (See more details in Section 4.2). Other approaches to model non-stationary
processes use a representation in terms of a basis such as wavelets (Nason et al., 2000;
Park et al., 2014; Cho and Fryzlewicz, 2015) and the smooth localized complex ex-
ponentials (SLEX) (Ombao et al., 2005), which are actually inspired by the Fourier
representations in the Dahlhaus locally stationary processes Dahlhaus (2000); Priestley
(1965). These approaches are frequentist and do not easily provide a framework for infer-
ence (e.g., obtaining confidence intervals). The class of time-domain parametric models
allows for the autoregressive-moving-average (ARMA) parameters to evolve over time
(see, e.g. Rao, 1970) or via parametric latent signals (West et al., 1999; Prado et al.,
2001). A restriction for this class of parametric models is that some processes might not
be adequately modeled by them.

This main contributions of this paper are: (a.) a sphere-product representation
of correlation/covariance matrix is introduced to induce flexible priors for correla-
tion/covariance matrices and processes; (b.) a general and flexible framework is pro-
posed for modeling mean, variance, and correlation processes separately; (c.) an efficient
algorithm is introduced to infer correlation matrices and processes; (d.) the posterior
contraction of modeling covariance (correlation) functions with Gaussian process prior
is studied for the first time.

The rest of the paper is organized as follows. In the next section, we present a geo-
metric view of covariance matrices and extend this view to allow covariance matrices to
change over time. In Section 3, we use this geometrical perspective to develop an effec-
tive and computationally efficient inferential method for modeling static and dynamic
covariance matrices. Using simulated data, we will evaluate our method in Section 4.
In Section 5, we apply our proposed method to local field potential (LFP) activity
data recorded from the hippocampus of rats performing a complex sequence memory
task (Allen et al., 2014, 2016; Ng et al., 2017). In the final section, we conclude with
discussions on the limitations of the current work and future extensions.

2 Structured Bayesian Modeling of the Covariance
(Correlation) Matrices

To derive flexible models for covariance and correlation matrices, we start with the
Cholesky decomposition, form a sphere-product representation, and finally obtain the
separation decomposition in Barnard et al. (2000) with correlations represented as prod-
ucts of unit vectors. The sphere-product representation is amenable for the inferential
algorithm to handle the resulting intractability, and hence lays the foundation for full
flexibility in choosing priors.
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Any covariance matrix Σ = [σij ] > 0 is symmetric positive definite, and hence has
a unique Cholesky decomposition Σ = LLT where the Cholesky factor L = [lij ] is a

lower triangular matrix such that σij =
∑min{i,j}

k=1 likljk. We denote the variance vector

as σ2 := [σ2
1 , · · · , σ2

D]
T
, then each variance component, σ2

i := σii, can be written in
terms of the corresponding row li of L as follows:

σ2
i =

i∑
k=1

l2ik = ‖li‖2, li := [li1, li2, · · · , lii]. (2.1)

For Σ to be positive definite, it is equivalent to require all the leading principal minors
{Mi} to be positive,

Mi =

i∏
k=1

l2kk > 0, i = 1, · · · , D ⇐⇒ lii �= 0, i = 1, · · · , D. (2.2)

Based on (2.1) and (2.2), for i ∈ {1, · · · , D}, li can be viewed as a point on a sphere
with radius σi excluding the equator, denoted as Si−1

0 (σi) := {l ∈ R
i|‖l‖2 = σi, lii �= 0}.

Therefore the space of the Cholesky factor in terms of its rows can be written as a
product of spheres and we require

(l1, l2, · · · , lD) ∈ S0
0 (σ1)× S1

0 (σ2) · · · × SD−1
0 (σD). (2.3)

Note that (2.3) is the sufficient and necessary condition for the matrix Σ = LLT to be
a covariance matrix.

We present probabilistic models involving covariance matrices in the following generic
form:

y|Σ(σ,L) ∼ �(y;Σ(σ,L)), Σ(σ,L) = LLT,

σ ∼ p(σ),

L|σ ∼ p(L;σ), vechT(L) ∈
D∏
i=1

Si−1
0 (σi),

(2.4)

where σ := [σ1, · · · , σD]
T
, and the half-vectorization in row order, vechT, transforms the

lower triangular matrix L into a vector (l1, l2, · · · , lD). The total dimension of (σ,L) is
D(D+1)

2 .1

Alternatively, if we separate variances from covariance, then we have a unique
Cholesky decomposition for the correlation matrix P = [ρij ] = L∗(L∗)T, where the
Cholesky factor L∗ = diag(σ−1)L can be obtained by normalizing each row of L.
The magnitude requirements for correlations are immediately satisfied by the Cauchy-

Schwarz inequality: |ρij | = |σij |
σiσj

=
|〈li,lj〉|

‖li‖2‖lj‖2
≤ 1. Thus we require

(l∗1, l
∗
2, · · · , l∗D) ∈ S0

0 × S1
0 · · · × SD−1

0 , (2.5)

1For each i ∈ {1, · · · , D}, given σi, there are only (i− 1) free parameters on Si−1
0 (σi), so there are

totally
D(D−1)

2
+D free parameters.
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where Si−1
0 := Si−1

0 (1). Similarly, (2.5) is the sufficient and necessary condition for

P = L∗(L∗)T to be a correlation matrix. Then we have the following alternatively
structured model for covariance Σ that involves correlation P explicitly

y|Σ(σ,L∗) ∼ �(y;Σ(σ,L∗)), Σ(σ,L∗) = diag(σ)P diag(σ), P = L∗(L∗)T,

σ ∼ p(σ),

L∗ ∼ p(L∗), vechT(L∗) ∈
D∏
i=1

Si−1
0 .

(2.6)

Note, this direct decomposition Σ = diag(σ)P diag(σ) as a separation strategy is moti-
vated by statistical thinking in terms of standard deviations and correlations (Barnard
et al., 2000). This setting is especially relevant if the statistical quantity of interest is
correlation matrix P itself, and we can then skip inference of the standard deviation σ
by fixing it to a data-derived point estimate.

In what follows, we will show that the above framework includes the inverse-Wishart
prior as a special case, but it can be easily generalized to a broader range of priors for
additional flexibility. Such flexibility enables us to better express prior knowledge, con-
trol the model complexity and speed up computation in modeling real-life phenomena.
This is crucial in modeling spatio-temporal processes with complex structures.

2.1 Connection to the Inverse-Wishart Prior

There are some interesting connections between the spherical product representations
(2.3) (2.5) and the early development of the Wishart distribution (Wishart, 1928). The
original Wishart distribution was derived by orthogonalizing multivariate Gaussian ran-
dom variables leading to a lower triangular matrix whose elements {t∗ij |i ≥ j} (analogous
to lij or l∗ij) were called rectangular coordinates. This way, the probability density has
a geometric interpretation as a product of volumes and approximate densities on a se-
ries of spherical shells with radius {t∗ii} (See more details in Sverdrup, 1947; Anderson,
2003). Now we demonstrate that the proposed schemes (2.4) (2.6) include the commonly
used inverse-Wishart prior as a special case in modeling covariances.

Suppose Σ is a random sample from the inverse-Wishart distribution W−1
D (Ψ, ν)

with the scale matrix Ψ > 0 and the degree of freedom ν ≥ D. Therefore, Σ−1 ∼
WD(Ψ−1, ν). Denote C as the Cholesky factor of Ψ−1, i.e. Ψ−1 = CCT. Then Σ−1

has the following Bartlett decomposition (Anderson, 2003; Smith and Hocking, 1972)

Σ−1 = TTT, T := CT∗, t∗ij ∼

⎧⎪⎨⎪⎩
χD−i+1, i = j,

N (0, 1), i > j,

δ0, i < j,

(2.7)

where the lower triangular matrix T, named Bartlett factor, has the following density
(Theorem 7.2.1 of Anderson, 2003)

p(T) =
|Ψ|ν/2

2D(ν−2)/2ΓD(ν/2)

D∏
i=1

|tii|ν−i exp

(
−1

2
tr(ΨTTT)

)
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with multivariate gamma function defined as ΓD(x) := πD(D−1)/4
∏D

i=1 Γ[x+(1− i)/2].

Now taking the inverse of the first equation in (2.7) yields the following reversed
Cholesky decomposition2

Σ = UUT, σij =

D∑
k=max{i,j}

uikujk, vech(UT) ∈
D∏
i=1

SD−i
0 (σi),

where U := T−T is an upper triangular matrix. The following proposition describes
the density of the reversed Cholesky factor U of Σ, which enables us to treat the
inverse-Wishart distribution as a special instance of strategy (2.4) or (2.6).

Proposition 2.1. Assume Σ ∼ W−1
D (Ψ, ν). Then its reversed Cholesky factor U has

the following density

p(U) =
|Ψ|ν/2

2D(ν−2)/2ΓD(ν/2)
|U|−(ν+D+1)

D∏
i=1

ui
ii exp

(
−1

2
tr(ΨU−TU−1)

)
.

Proof. See Section A in the supplementary file (Lan et al., 2019).

If we normalize each row of U and write

U = diag(σ)U∗, σi =
√
σii = ‖ui‖, u∗

ij = uij/σi ,

then the following joint prior of (σ,U∗) is inseparable in general:

p(σ,U∗) ∝
D∏
i=1

|σiu
∗
ii|i−(ν+D+1) exp

{
−1

2
tr(Ψ diag(σ−1)(U∗)−T(U∗)−1 diag(σ−1))

}
.

(2.8)
With this result, we can conditionally model variance and correlation factor as p(σ|U∗)
and p(U∗|σ) respectively, similarly as in our proposed scheme (2.4) or (2.6). It is also
used to verify the validity of our proposed method (2.6) (see more details in Section
4.1). A similar result exists for the Wishart prior distribution regarding the Cholesky
factor. This representation facilitates the construction of a broader class of more flexible
prior distributions for covariance matrix detailed below.

2.2 More Flexible Priors

Within the above framework, the only constraint on U or L is that it resides on the
product of spheres with increasing dimensions. Using this fact, we can develop a broader
class of priors on covariance matrices and thus be able to model processes with more

2This can be achieved through the exchange matrix (a.k.a. reversal matrix, backward identity, or
standard involutory permutation) E with 1’s on the anti-diagonal and 0’s elsewhere. Note that E is both
involutory and orthogonal, i.e. E = E−1 = ET. Let EΣE = LLT be the usual Cholesky decomposition.
Then Σ = (ELE)(ELE)T = UUT and define U := ELET.
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complicated dependence in covariance structures. Since σ and L∗ have independent
priors in (2.6), in what follows we focus on the scheme (2.6), and for simplicity, we
denote the normalized Cholesky factor as L. Also, following Barnard et al. (2000), we
assume a log-Normal prior on σ:

log(σ) ∼ N (ξ,Λ).

We now discuss priors on L that properly reflect the prior knowledge regarding the
covariance structure among variables. If two variables, yi and yj (assuming i < j) are
known to be uncorrelated a priori, i.e. 0 = ρij = 〈li, lj〉, then we can choose a prior
that encourages li ⊥ lj , e.g. ljk ≈ 0 for k ≤ i. In contrast, if we believe a priori that
there is a strong correlation between the two variables, we can specify that li and lj be
linearly dependent, e.g., by setting [ljk]k≤i ≈ ±li . When there is no prior information,
we might assume that components are uncorrelated and consider the following Jeffreys
prior for li that concentrates on the (two) poles of Si−1

0 ,

p(li) ∝
√

detG(li) = |lii|−1, i = 2, · · · , D, (2.9)

where G(li) is the canonical metric on spheres (Lan et al., 2014). Putting more prior
probability on the diagonal elements of L renders fewer non-zero off-diagonal elements,
which in turn leads to a larger number of perpendicular variables; that is, such a prior
favors zeros in the correlation matrix P. More generally, one can map a probability
distribution defined on the simplex onto the sphere and consider the following squared-
Dirichlet distribution.

Definition 1 (Squared-Dirichlet distribution). A random vector li ∈ Si−1 is said to
have a squared-Dirichlet distribution with parameter αi := (αi1, αi2, · · · , αii) if

l2i := (l2i1, l
2
i2, · · · , l2ii) ∼ Dir(αi).

Denote li ∼ Dir2(αi). Then li has the following density

p(li) = p(l2i )|2li| ∝ (l2i )
αi−1|li| = |li|2αi−1 :=

i∏
k=1

|lik|2αik−1. (2.10)

Remark 1. This definition includes a large class of flexible prior distributions on the
unit sphere that specify different concentrations of probability density through the pa-
rameter αi. For example, the Jeffreys prior (2.9) corresponds to αi = ( 12 , · · · ,

1
2 , 0).

To induce a prior distribution for the correlation matrix P = LLT, one can specify
priors on row vectors of L, li ∼ Dir2(αi) for i = 2, · · · , D. Each pair for (li, lj) in turn
defines a prior distribution for the correlation ρij = 〈li, lj〉, whose sign is determined by
the angle between li and lj . To encourage small correlation, we choose the concentration
parameter αi so that the probability density concentrates around the (two) poles of
Si−1
0 , e.g. 0 < αik � αii for k < i. Figure 1 illustrates the density heat maps of some

symmetric squared-Dirichlet distributions Dir2(α1) on S2. It is interesting that the
squared-Dirichlet distribution induces two important uniform prior distributions over
correlation matrices from Barnard et al. (2000) in an effort to provide flexible priors for
covariance matrices, as stated in the following theorem.
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Figure 1: Symmetric squared-Dirichlet distributions Dir2(α) defined on the 2-sphere
with different settings for concentration parameter α = α1. The uniform distribution on
the simplex, Dir(1), becomes non-uniform on the sphere due to the stretch of geometry
(left); the symmetric Dirichlet distribution Dir(121) becomes uniform on the sphere
(middle); with α closer to 0, the induced distribution becomes more concentrated on
the polar points (right).

Theorem 2.1 (Uniform distributions). Let P = LLT. Suppose li ∼ Dir2(αi), for
i = 2, · · · , D, are independent, where li is the i-th row of L. We have the following

1. If αi = ( 121
T
i−1, αii), αii =

(i−2)D−1
2 , then P follows a marginally uniform distri-

bution, that is, ρij ∼ Unif(−1, 1), i �= j.

2. If αi = ( 121
T
i−1, αii), αii =

D−i
2 +1, then P follows a jointly uniform distribution,

that is, p(P) ∝ 1.

Proof. See Section A in the supplementary file (Lan et al., 2019).

Another natural spherical prior can be obtained by constraining a multivariate Gaus-
sian random vector to have unit norm. This is later generalized to a vector Gaussian
process constrained to a sphere that serves as a suitable prior for modeling correlation
processes. Now we consider the following unit-vector Gaussian distribution:

Definition 2 (Unit-vector Gaussian distribution). A random vector li ∈ Si−1 is said
to have a unit-vector Gaussian distribution with mean μ and covariance Σ if

li ∼ Ni(μ,Σ), with ‖li‖2 = 1.

Then we denote li ∼ N S
i (μ,Σ) and li has the following (conditional) density

p(li| ‖li‖2 = 1) =
1

(2π)
i
2 |Σ| 12

exp

{
−1

2
(li − μ)

T
Σ−1(li − μ)

}
, ‖li‖2 = 1.

Remark 2. This conditional density essentially defines the following Fisher-Bingham
distribution (a.k.a. generalized Kent distribution, Kent, 1982; Mardia and Jupp, 2009).
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If Σ = I, then the above distribution reduces to the von Mises-Fisher distribution
(Fisher, 1953; Mardia and Jupp, 2009) as a special case. If in addition μ = 0, then the
above density becomes a constant; that is, the corresponding distribution is uniform on
the sphere Si−1

0 . See more details in Section E.1 of the supplementary file (Lan et al.,
2019).

2.3 Dynamically Modeling the Covariance Matrices

We can generalize the proposed framework for modeling covariance/correlation matri-
ces to the dynamic setting by adding subscript t to variables in the model (2.4) and
the model (2.6), thus called dynamic covariance and dynamic correlation models re-
spectively. We focus the latter in this section. One can model the components of σt

as independent dynamic processes using, e.g. ARMA, generalized autoregressive con-
ditional heteroskedasticity (GARCH), or log-Gaussian process. For Lt, we use vector
processes. Since each row of Lt has to be on a sphere of certain dimension, we require
the unit norm constraint for the dynamic process over time. We refer to any multivariate
process li(x) satisfying ‖li(x)‖ ≡ 1, ∀x ∈ X as unit-vector process (uvP). A unit-vector
process can be obtained by constraining an existing multivariate process, e.g. the vector
Gaussian process (vGP), as defined below.

Definition 3 (Vector Gaussian process). A D-dimensional vector Gaussian process
Z(x) := (Z1(x), · · · , ZD(x)), with vector mean function μ(x) = (μ1(x), · · · , μD(x)),
covariance function C and (D-dimensional) cross covariance VD×D,

Z(x) ∼ GPD(μ, C,VD×D)

is a collection of D-dimensional random vectors, indexed by x ∈ X , such that for any
finite set of indices {x1, · · · , xN}, the random matrix Z̃N×D := (Z(x1), · · · ,Z(xN ))

T

has the following matrix normal distribution

Z̃N×D ∼ MNN×D(MN×D,KN×N ,VD×D),

where MN×D := (m1, · · · ,mD), and mk = (μk(x1), · · · , μk(xN ))
T
, and K is the kernel

matrix with elements Kij = C(xi, xj).

Remark 3. Note for each k = 1, · · ·D, we have the following marginal GP

Zk(x) ∼ GP(μk, C).

In the above definition, we require a common kernel C for all the marginal GPs, whose
dependence is characterized by the cross covariance VD×D. On the other hand, for any
fixed x∗ ∈ X , we have

Z(x∗) ∼ ND(μ(x∗),VD×D).

For simplicity, we often consider μ ≡ 0 and VD×D = ID. That is, Zk(x)
iid∼ GP(0, C)

for k = 1, · · · , D.
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Figure 2: A realization of vector GP Zt (left), unit-vector GP (forming rows of) Lt

(middle) and the induced correlation process Pt (right).

Restricting vGP Z(·) to sphere yields a unit-vector Gaussian process (uvGP) Z∗(·) :=
Z(·)| {‖Z(·)‖2 ≡ 1}, denoted as Z∗(·) ∼ GPS

D(μ, C,V). Note for any fixed x∗ ∈ X ,
Z∗(x∗) ∼ N S

D(μ,V). Setting μ ≡ 0, V = I, and conditioned on the length �n of each

row of Z̃, we have

p(Z̃∗| {‖zn·‖ = �n}) =
∏N

n=1 �
D
n

(2π)
ND
2 |K|D2

exp

{
−1

2
tr
[
(Z̃∗)

T
diag({�n})K−1 diag({�n})Z̃∗

]}
.

This conditional density is preserved by the inference algorithm in Section 3 and used
for defining priors for correlations with all �n = 1. For each marginal GP, we select the
following powered exponential function as the common kernel

C(x, x′) = γ exp(−0.5‖x− x′‖s/ρs),

where s controls the smoothness, the scale parameter γ is given an inverse-Gamma prior,
and the correlation length parameter ρ is given a log-normal prior. Figure 2 shows a
realization of vector GP Zt, unit-vector GP (forming rows of) Lt and the induced
correlation process Pt respectively.

In what follows, we focus on multivariate time series; therefore, we use the one
dimensional time index t ∈ X = R

+. The overall dynamic correlation model can be
summarized as follows:

yt ∼ N (μt,Σt), Σt = diag(σt)LtLt
T diag(σt),

μt ∼ GPD(0, Cμ, I), Cμ(t, t′) = γμ exp(−0.5‖t− t′‖s/ρsμ),
logσt ∼ GPD(0, Cσ, I), Cσ(t, t′) = γσ exp(−0.5‖t− t′‖s/ρsσ),
li(t) ∼ GPS

i (ni, CL, I), CL(t, t′) = γL exp(−0.5‖t− t′‖s/ρsL),
γ∗ ∼ Γ−1(a∗, b∗), log ρ∗ ∼ N (m∗, V∗), ∗ = μ, σ, orL,

(2.11)

where a constant mean function ni = (0, · · · , 0, 1) is used in the uvGP prior for li(t),
with mean matrix M = 1N ⊗ nT

i for the realization l̃i. This model (2.11) captures the
spatial dependence in the matrix Σt, which evolves along the time; while the tempo-
ral correlation is characterized by various GPs. The induced covariance process Σt is
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not a generalized Wishart process (Wilson and Ghahramani, 2011), which only models
Cholesky factor of covariance using GP. Though with GP, dynamic covariance model
may work similarly as the dynamic correlation model (2.11), yet the latter provides extra
flexibility in modeling the evolution of variances and correlations separately. In general
such flexibility could be useful in handling constraints for processes, e.g. modeling the
dynamic probability for binary time series.

With this structured model (2.11), one can naturally model the evolution of variances
and correlations separately in order to obtain more flexibility. If the focus is on modeling
the correlation among multiple time series, then one can substitute σt with a point
estimate σ̂ from one trial and assume a steady variance vector. Alternatively, if sufficient
trials are present, one can obtain an empirical estimate, σ̂t, from multiple trials at each
time point. In the following, we study the posterior contraction of GP modeling in this
setting.

2.4 Posterior Contraction Theorem

We now provide a theorem on the posterior contraction of the dynamic covariance model
before we conclude this section. Because the posterior contraction for mean regression
using Gaussian process has been vastly investigated in the literature (van der Vaart
and van Zanten, 2008a, 2009, 2011; Yang and Dunson, 2016), we only investigate the
posterior contraction for the covariance regression and set μt ≡ 0. We leave the posterior
contraction of the dynamic correlation model (2.11) for future work. Note, the Cholesky
decomposition of covariance matrix Σ = LLT is unique if all the diagonal entries of L
are positive. Therefore in the remaining of this section, we identify Cholesky factors up
to a column-wise sign, i.e. L ∼ L diag(−

∑
j∈J ej) for J ⊂ {1, · · · , D} where ej is the

j-th column of identity matrix ID.

In most cases, Gaussian process Lt can be viewed as a tight Borel measurable map
in a Banach space, e.g. a space of continuous functions or Lp space. It is well known
that the support of a centered GP is equal to the closure of the reproducible kernel
Hilbert space (RKHS) H associated to this process (Lemma 5.1 of van der Vaart and
van Zanten, 2008b). Because the posterior distribution necessarily puts all its mass
on the support of the prior, the posterior consistency requires the true parameter L0

governing the distribution of the data to fall in this support (van der Vaart and van
Zanten, 2008a). Following van der Vaart and van Zanten (2008a,b, 2011), we express
the rate of the posterior contraction in terms of the concentration function

φL0(ε) = inf
h∈H: ‖h−L0‖<ε

‖h‖2
H
− log Π(L : ‖L‖ < ε), (2.12)

where ‖·‖ is the norm of the Banach space where the GP L takes value, Π is the GP prior
and H is the associated RKHS with norm ‖ · ‖H. Under certain regularity conditions,
the posterior contracts with increasing data expressed in n at the rate εn → 0 satisfying

φL0(εn) ≤ nε2n. (2.13)

Let ‖L‖∞ := max1≤i,j≤D supt∈X |lij(t)|. Consider Banach space L∞(X )D(D+1)/2 :=
{L : ‖L‖∞ < +∞}. Let p be a (centered) Gaussian model, which is uniquely deter-
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mined by the covariance matrix Σ = LLT. Therefore the model density is parametrized

by L, hence denoted as pL. Denote P
(n)
L := ⊗n

i=1PL,i as the product measure on
⊗n

i=1(Xi,Bi, μi). Each PL,i has a density pLi with respect to the σ-finite measure μi.
Define the average Hellinger distance as d2n(L,L

′) = 1
n

∑n
i=1

∫
(
√
pL,i−√

pL′,i)
2dμi. De-

note the observations Y (n) = {Yi}ni=1 with Yi = y(ti). Note they are independent but
not identically distributed (inid). Now we state the main theorem of posterior contrac-
tion.

Theorem 2.2 (Posterior contraction). Let L − I be a Borel measurable, zero-mean

tight Gaussian random element in L∞(X )D(D+1)/2 and P
(n)
L = ⊗n

i=1PL,i be the product
measure of Y (n) parametrized by L. Let φL0 be the function in (2.12) with the uniform

norm ‖·‖∞. If L0 is contained in the support of L and φL0 satisfies (2.13) with εn ≥ n− 1
2 ,

then Πn(L : dn(L,L0) > Mnεn|Y (n)) → 0 in P
(n)
L0

-probability for every Mn → ∞.

Proof. See Section B in the supplementary file (Lan et al., 2019).

Remark 4. In principle, the smoothness of GP should match the regularity of the true
parameter to achieve the optimal rate of contraction (van der Vaart and van Zanten,
2008a, 2011). One can scale GP, e.g. using an inverse-Gamma bandwidth, to get op-
timal contraction rate for every regularity level so that the resulting estimator is rate
adaptive (van der Vaart and van Zanten, 2009, 2011). One can refer to Section 3.2
of (van der Vaart and van Zanten, 2011) for posterior contraction rates using squared
exponential kernel for GP. We leave further investigation on contraction rates in the
setting of covariance regression to future work.

Remark 5. Here the GP prior L defines a (mostly finite) probability measure on the
space of bounded functions. The true parameter function L0 is required to be contained
in the support of the prior, the RKHS of L. The contraction rate depends on the position
of L0 relative to the RKHS and the small-ball probability Π(‖L‖ < ε).

3 Posterior Inference

Now we obtain the posterior probability of mean μt, variance σt, Cholesky factor of
correlation Lt, hyper-parameters γ := (γμ, γσ, γL) and ρ := (ρμ, ρσ, ρL) in the model
(2.11). Denote the realization of processes μt,σt,Lt at discrete time points {tn}Nn=1

as μ̃N×D, σ̃N×D, L̃N×D×D respectively. Transform the parameters τ̃ := log(σ̃), η :=

log(ρ) for calculation convenience. Denote ỸM×N×D := {Y1, · · · ,YM} for M trials,

(Ym)N×D := [ym1, · · · ,ymN ]
T
and y∗

mn := (ymn−μn)◦e−τn where ◦ is the Hadamard
product (a.k.a. Schur product), i.e. the entry-wise product. Let K∗(γ∗, η∗) = γ∗K0∗(η∗)
and l̃∗i := l̃i − 1N ⊗ nT

i .

3.1 Metropolis-within-Gibbs

We use a Metropolis-within-Gibbs algorithm and alternate updating the model param-
eters μ̃, τ̃ , L̃,γ,η. We now list the parameters and their respective updates one by one.
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(γ) Note the prior for γ is conditionally conjugate given ∗ = μ, τ, orL,

γ∗|∗̃, η∗ ∼ Γ−1(a′∗, b
′
∗), a′∗ = a∗+

ND

2
(
D + 1

2
− 1

D
)[∗=L], b′∗ = b∗+

1

2
tr(∗̃TK0∗(η∗)

−1∗̃),

where [condition] is 1 with the condition satisfied and 0 otherwise.

(η) Given ∗ = μ, τ, orL, we could sample η∗ using the slice sampler (Neal, 2003),
which only requires log-posterior density and works well for scalar parameters,

log p(η∗|∗̃, γ∗) = −
D(D+1

2 − 1
D )[∗=L]

2
log |K0∗(η∗)| −

tr(∗̃TK0∗(η∗)
−1∗̃)

2γ∗
− (η∗ −m∗)

2

2V∗
.

(μ̃) By the definition of vGP, we have μ̃|γμ, ημ ∼ MNN×D(0,Kμ, ID); therefore,
vec(μ̃)|γμ, ημ ∼ NND(0, ID ⊗Kμ). On the other hand, one can write

M∑
m=1

N∑
n=1

y∗
mn

TP−1
n y∗

mn =

M∑
m=1

vec((Ym − μ̃)
T
)
T
diag({Σ̃−1

n })vec((Ym − μ̃)
T
)

=

M∑
m=1

(vec(Ym)− vec(μ̃))
T
Σ̃−1

K (vec(Ym)− vec(μ̃)),

where Σ̃−1
K := K(D,N) diag({Σ̃n})−1K(N,D), and K(N,D) is the commutation matrix of

size ND × ND such that for any N × D matrix A, K(N,D)vec(A) = vec(AT) (Tracy
and Dwyer, 1969; Magnus and Neudecker, 1979). Therefore, the prior on vec(μ̃) is
conditionally conjugate, and we have

vec(μ̃)|Ỹ, Σ̃, γμ, ημ ∼ NND(μ′,Σ′)

μ′ = Σ′Σ̃−1
K

M∑
m=1

vec(Ym), Σ′ =
(
ID ⊗K−1

μ +MΣ̃−1
K

)−1

.

(τ̃ ) Using a similar argument by matrix Normal prior for τ̃ , we have vec(τ̃ )|γτ , ητ ∼
NND(0, ID⊗Kτ ). Therefore, we could use the elliptic slice sampler (ESS, Murray et al.,
2010), which only requires the log-likelihood

log p(τ̃ ; Ỹ, μ̃) = −M1T
NDvec(τ̃ )−

M∑
m=1

1

2
vec(Y∗

m)
T
P̃

−1

K vec(Y∗
m),

where P̃
−1

K := K(D,N) diag({P̃n})−1K(N,D) and Y∗
m := (Ym − μ̃) ◦ exp(−τ̃ ).

(L̃) For each n ∈ {1, · · ·N}, we have vechT(Ln) ∈
∏D

i=1 Si−1
0 . We could sample from

its posterior distribution using the Δ-Spherical Hamiltonian Monte Carlo (Δ-SphHMC)
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described below. The log-posterior density of L̃ is

log p(L̃|Ỹ, μ̃, τ̃ , γL, ηL) = −
N∑

n=1

[
M log |Ln|+

M∑
m=1

1

2
y∗
mn

TP−1
n y∗

mn

]

− 1

2

D∑
i=2

tr(̃l∗Ti K−1
L l̃∗i ).

The derivative of log-likelihood with respect to Ln and the derivative of log-prior with
respect to l̃i can be calculated as

∂ log p(L̃; Ỹ, μ̃, τ̃ )

∂Ln
= −M

ID
Ln

+
M∑

m=1

tril(P−1
n y∗

mny
∗
mn

TL−T
n ),

∂ log p(L̃|γL, ηL)
∂ l̃i

= −K−1
L l̃∗i .

3.2 Spherical HMC

We need an efficient algorithm to handle the intractability in the posterior distribution of
L̃ introduced by various flexible priors. Spherical Hamiltonian Monte Carlo (SphHMC,
Lan et al., 2014; Lan and Shahbaba, 2016) is a Hamiltonian Monte Carlo (HMC, Duane
et al., 1987; Neal, 2011) algorithm on spheres that can be viewed as a special case of
geodesic Monte Carlo (Byrne and Girolami, 2013), or manifold Monte Carlo methods
(Girolami and Calderhead, 2011; Lan et al., 2015). The algorithm was originally pro-
posed to handle norm constraints in sampling so it is natural to use it to sample each
row of the Cholesky factor of a correlation matrix with unit 2-norm constraint. The
general notation q is instantiated as li in this section.

Assume a probability distribution with density function f(q) is defined on a (D−1)
dimensional sphere with radius r, SD−1(r). Due to the norm constraint, there are (D−1)
free parameters q−D := (q1, · · · , qD−1), which can be viewed as the Cartesian coordi-
nates for the manifold SD−1

+ (r). To induce Hamiltonian dynamics on the sphere, we
define the potential energy for position q as U(q) := − log f(q). Endowing the canonical

spherical metric G(q−D) = ID−1 +
q−DqT

−D

q2D
on the Riemannian manifold SD−1(r), we

introduce the auxiliary velocity vector v|q ∼ N (0,G(q)−1) and define the associated
kinetic energy as K(v;q) := − log fN (v|q) = −1

2 log |G(q−D)| + 1
2v

T
−DG(q−D)v−D

(Girolami and Calderhead, 2011). Therefore the total energy is defined as

E(q,v) := U(q) +K(v;q) = Ũ(q) +K0(v;q), (3.1)

where we denote Ũ(q) := U(q)− 1
2 log |G(q−D)| = − log f(q)+log |qD|, and K0(v;q) :=

1
2v

T
−DG(q−D)v−D = 1

2v
Tv (Lan and Shahbaba, 2016). Therefore the Lagrangian dy-

namics with above total energy (3.1) is (Lan et al., 2015)

q̇−D = v−D,

v̇−D = −vT
−DΓ(q−D)v−D −G(q−D)−1∇q−D

Ũ(q),
(3.2)
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where Γ(q−D) = r−2G(q−D) ⊗ q−D is the Christoffel symbols of second kind (see
details in Lan and Shahbaba, 2016, for r = 1). A splitting technique is used to yield a
geometric integrator called leapfrog that mainly moves along geodesics (great circles) on
the sphere with random perturbation in the direction. It is then applied with discrete
step size h for T times to numerically solve (3.2) in order to obtain a proposed state
(qT ,vT ). This proposal can be accepted with certain probability expressed in the total
energy (3.1). Interested readers can refer to Lan et al. (2014), Lan and Shahbaba (2016),
or Section C in the supplementary file (Lan et al., 2019). In addition to the original
work in Lan et al. (2014) and Lan and Shahbaba (2016), we prove the following result
on energy conservation of the algorithm (Beskos et al., 2011).

Theorem 3.1. Let h → 0 we have the following energy conservation

E(q(T ),v(T ))− E(q(0),v(0)) = Ũ(q(T ))− Ũ(q(0))−
∫ T

0

〈v(t),g(q(t))〉dt = 0.

Proof. See Section C in the supplementary file (Lan et al., 2019).

3.3 Adaptive Spherical HMC

There are two tuning parameters in HMC and its variants: the step size h and the
number of integration (leapfrog) steps T . Hand tuning heavily relies on domain expertise
and could be inefficient. Here, we adopt the ‘No-U-Turn’ idea from Hoffman and Gelman
(2014) and introduce a novel adaptive algorithm beyond Lan et al. (2014); Lan and
Shahbaba (2016) that obviates manual tuning of these parameters.

First, for any given step size h, we adopt a rule for setting the number of leapfrog
steps T based on the same philosophy as ‘No-U-Turn’ (Hoffman and Gelman, 2014). The
idea is to avoid waste of computation occurred (e.g. when the sampler backtracks on its
trajectory) without breaking the detailed balance condition for the Markov chain Monte
Carlo (MCMC) transition kernel. SD−1(r) is a compact manifold where any two points
q(0),q(t) ∈ SD−1(r) have bounded geodesic distance πr. We adopt the stopping rule for
the leapfrog when the sampler exits the orthant of the initial state, that is, the trajectory
measured in geodesic distance is at least π

2 r, which is equivalent to 〈q(0),q(t)〉 < 0.
On the other hand, this condition may not be satisfied within reasonable number of
iterations because the geometric integrator does not exactly follow a geodesic in general
(only the middle part does), therefore we set some threshold Tmax for the number of
tests, and adopt the following ‘Two-Orthants’ (as the starting and end points occupy
two orthants) rule for the number of leapfrogs:

T2orth = min
τ∈{0,··· ,Tmax}

{τ : 〈q0,qτ 〉 < 0}. (3.3)

Alternatively, one can stop the leapfrog steps in a stochastic way based on the geodesic
distance travelled:

Tstoch = min
τ

{τ : Zτ = 0}, Zτ ∼ Bern(pτ ), pτ =
r−2〈q0,qτ 〉+ 1

2
. (3.4)
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These stopping criteria are already time reversible, so the recursive binary tree as in
‘No-U-Turn’ algorithm (Hoffman and Gelman, 2014) is no longer needed.

Lastly, we adopt the dual averaging scheme (Nesterov, 2009) for the adaptation
of step size h. See Hoffman and Gelman (2014) for more details. We summarize our
Adaptive Spherical Hamiltonian Monte Carlo (adp-SphHMC) in the supplementary file
(Lan et al., 2019).

To sample L (or Lt), we could update each row vector li ∈ Si−1
0 in parallel, and ac-

cept/reject vechT(L) (or vechT(Lt)) simultaneously in terms of the sum of total energy of
all components. We refer to the resulting algorithm as Δ-Spherical HMC (Δ-SphHMC).

The computational complexity involving GP prior is O(N3), and that of the like-

lihood evaluation is O(MD2). MCMC updates of μ̃N×D, σ̃N×D, L̃N×D×D have com-
plexity O(ND), O(ND) and O(ND2) respectively. To scale up applications to larger
dimension D, one could preliminarily classify data into groups, and arrange the corre-
sponding blocks of their covariance/correlation matrix in some ‘band’ along the main
diagonal assuming no correlation among groups. More specifically, we can assume Lt

is w-band lower triangular matrix for each time t, i.e. lij = 0 for i < j or i − j ≥ w,
then the resulting covariance/correlation matrix will be (2w − 1)-banded. In this way

the complexity of likelihood evaluation and updating L̃ will be reduced to O(MwD)
and O(NwD) resepctively. Therefore the total computational cost would scale linearly
with the dimension D. This technique will be investigated in Section 4.2.

4 Simulation Studies

In this section, we use simulated examples to illustrate the advantage of our structured
models for covariance. First, we consider the normal-inverse-Wishart problem. Since
there is conjugacy and we know the true posterior, we use this to verify our method and
investigate flexible priors in Section 2.2. Then we test our dynamical modeling method
in Section 2.3 on a periodic process model. Our model manifests full flexibility compared
to a state-of-the-art nonparametric covariance regression model based on latent factor
process (Fox and Dunson, 2015).

4.1 Normal-inverse-Wishart Problem

Consider the following example involving inverse-Wishart prior

yn|Σ ∼ N (μ0,Σ), n = 1, · · · , N,

Σ ∼ W−1
D (Ψ, ν).

(4.1)

It is known that the posterior of Σ|Y is still inverse-Wishart distribution:

Σ|Y ∼ W−1
D (Ψ+ (Y − μ0)(Y − μ0)

T
, ν +N), Y = [y1, · · · ,yN ]T. (4.2)

We consider dimension D = 3 and generate data Y with μ0 = 0, Σ = Σ0 = 1
11 (I +

11T) for N = 20 data points so that the prior is not overwhelmed by data.
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Figure 3: Marginal posterior densities of σij in the normal-inverse-Wishart problem.
Solid blue lines are estimates by Δ-SphHMC and dashed red lines are estimates by
direct sampling. All densities are estimated with 106 samples.

Verification of Validity

Specifying conditional priors based on (2.8) in the structured model (2.6), we want to
check the validity of our proposed method by comparing the posterior estimates using
Δ-SphHMC agains the truth (4.2).

We sample τ := log(σ) using standard HMC and U∗ using Δ-SphHMC. They are
updated in Metropolis-Within-Gibbs scheme. 106 samples are collected after burning
the first 10% and subsampling every 1 of 10. For each sample of τ and vech(U∗),

we calculate Σ = diag(eτ )U∗(U∗)T diag(eτ ). Marginal densities of entries in Σ are
estimated with these samples and plotted against the results by direct sampling in
Figure 3. Despite of sampling variance, these estimates closely match the results by
direct sampling, indicating the validity of our proposed method.

Examining Flexibility of Priors

We have studied several spherical priors for the Cholesky factor of correlation matrix
proposed in Section 2.2. Now we examine the flexibility of these priors in providing prior
information for correlation with various parameter settings.

With the same data generated according to (4.1), we now consider the squared-
Dirichlet prior (2.10) for L in the structured model (2.6) with the following setting

τi = log(σi) ∼ N (0, 0.12), i = 1, · · · , D,

li ∼ Dir2(αi), αi = (α1i−1, α0), i = 2, · · · , D,
(4.3)

where we consider three cases i) α = 1, α0 = 1; ii) α = 0.1, α0 = 1; iii) α = 0.1, α0 = 10.

We generate 106 prior samples (according to (4.3)) and posterior samples (by Δ-
SphHMC) for L respectively and covert them to P = LLT. For each entry of ρij , we
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Figure 4: Marginal posterior, prior (induced from squared-Dirichlet distribution) den-
sities of correlations and MLEs with different settings for concentration parameter α,
estimated with 106 samples.

estimate the marginal posterior (prior) density based on these posterior (prior) sam-
ples. The posteriors, priors and maximal likelihood estimates (MLEs) of correlations
ρij are plotted in Figure 4 for different α’s respectively. In general, the posteriors are
compromise between priors and the likelihoods (MLEs). With more and more weight
(through α) put around the poles (last component) of each factor sphere, the priors
become increasingly dominant that the posteriors (red dash lines) almost fall on priors
(blue solid lines) when α = (0.1, 0.1, 10). In this extreme case, the squared-Dirichlet
distributions induce priors in favor of trivial (zero) correlations. We have similar con-
clusion on Bingham prior and von Mises-Fisher prior but results are reported in Section
E.1 of the supplementary file (Lan et al., 2019).

4.2 Simulated Periodic Processes

In this section, we investigate the performance of our dynamic model (2.11) on the
following periodic process example

y(t) ∼ ND(μ(t), Σ(t)), Σ(t) = L(t)L(t)
T ◦ S, t ∈ [0, 2],

μi(t) = sin(itπ/D), Lij(t) = (−1)i sin(itπ/D)(−1)j cos(jtπ/D), j ≤ i = 1, · · · , D,

Sij = (|i− j|+ 1)−1, i, j = 1, · · · , D.
(4.4)

Based on the model (4.4), we generate M trials (process realizations) of data y at
N evenly spaced points for t in [0, 2], and therefore the whole data set {y(t)} is an
M × N × D array. We first consider D = 2 to investigate the posterior contraction
phenomena and the model flexibility; then we consider D = 100 over a shorter period
[0, 1] to show the scalability using the ‘w-band’ structure.
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Figure 5: Estimation of the underlying mean functions μt (left in each of 4 subpannels)
and covariance functions Σt (right in each of 4 subpannels) of 2-dimensional periodic
processes. M is the number of trials, and N is the number of discretization points.
Dashed lines are true values, solid lines are estimates and shaded regions are 95%
credible bands.

Posterior Contraction

Posterior contraction describes the phenomenon that the posterior concentrates on
smaller and smaller neighborhood of the true parameter (function) given more and more
data (van der Vaart and van Zanten, 2008a). We investigate such phenomena in both
mean functions and covariance functions in our model (2.11) using the following settings
i) M = 10, N = 20; ii) M = 100, N = 20; iii) M = 10, N = 200; iv) M = 100, N = 200.

To fit the data using the model (2.11), we set s = 2, a = (1, 1, 1), b = (0.1, 10−3, 0.2),
m = (0, 0, 0) for all settings, V = (1, 0.5, 1) for N = 20 and V = (1, 1, 0.3) for N =
200. We also add an additional nugget of 10−5In to all the covariance kernel of GPs
to ensure non-degeneracy. Following the procedure in Section 3.1, we run MCMC for
1.5 × 105 iterations, burn in the first 5 × 104 and subsample 1 for every 10. Based on
the resulting 104 posterior samples, we estimate the underlying mean functions and
covariance functions and plot the estimates in Figure 5.

Note in Figure 5, both M and N have effect on the amount of data information
thereafter on the posterior contraction but the contraction rate may depend on them
differently. Both mean and covariance functions have narrower credible bands for more
discretization points N (comparing N = 20 in the first row with N = 200 for the
second row). On the other hand, both posteriors contract further with more trials M
(comparing M = 10 in the first column agains M = 100 for the second column). In
general the posterior of mean function contracts to the truth faster than the posterior
of covariance function. With M = 100 trials and N = 200 discretization points, both
mean and covariance functions are almost recovered by the model (2.11).
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Figure 6: Estimation of the underlying mean functions μt (left column), variance func-
tions σt (middle column) and correlation function ρt (right column) of 2-dimensional
periodic processes, using latent factor process model (upper row) and our flexible model
(lower row), based on M = 10 trials of data over N = 200 evenly spaced points. Dashed
lines are true values, solid lines are estimates and shaded regions are 95% credible bands.

Full Flexibility

Our method (2.11) grants full flexibility because it models mean, variance and correla-
tion processes separately. This is particularly useful if they behave differently. It con-
trasts with latent factor based models that tie mean and covariance processes together.
One of the state-of-the-art models of this type is Bayesian nonparametric covariance
regression (Fox and Dunson, 2015):

y(x) ∼ ND(μ(x), Σ(x)), μ(x) = Λ(x)ψ(x), Σ(x) = Λ(x)Λ(x)
T
+Σ0. (4.5)

We tweak the simulated example (4.4) for D = 2 to let mean and correlation processes
have higher frequency than variance processes, as shown in the dashed lines in Figure
6. We generate M = 10 trials of data over N = 200 evenly spaced points. In this case,
the true mean processes μ(x) and true covariance processes Σ(x) behave differently but
are modeled with a common loading matrix Λ(x) in model (4.5). This imposes difficulty
on (4.5) to have a latent factor process ψ(x) that could properly accommodate the
heterogeneity in mean and covariance processes. Figure 6 shows that due to this reason,
latent factor based model (4.5) (upper row) fails to generate satisfactory fit for all of the
mean, variance and correlation processes. Our fully flexible model (2.11) (bottom row),
on the contrary, successfully produces more accurate characterization for all of them.
Note that this artificial example is used to demonstrate the flexibility of our dynamic
model (2.11). For cases that are not as extreme, (4.5) may performance equally well.
See more discussion in Section 6 and more details in Section E.2 in the supplementary
file (Lan et al., 2019).
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Figure 7: Underlying structure of the correlation matrix (left), selective posterior esti-
mates of the correlation functions Pt (middle), and its Frobenius-norm distance to the
truth (right) based on 100-dimensional periodic processes with 2-band structure, using
M = 100 trials over N = 100 discretization points. Dashed lines are true values, solid
lines are estimates and shaded regions are the 95% credible bands.

Scalability

Now we use the same simulation model (4.4) for D = 100 dimensions to test the
scalability of our dynamic model (2.11). However instead of the full covariance, we
consider a covariance matrix with 110 non-zero off-diagonal entries ρ1,2, ρ3,4, · · · , ρ99,100
and a few outside the ‘2-band’ of the diagonal. The sparsity structure of the covariance
is shown in the left panel of Figure 7 where the red lines indicate the ‘2-band’ structure.
We focus on the correlation process in this example, thus set μt ≡ 0 and σt ≡ 1, for
t ∈ [0, 1]. More specifically when generating the data {yt}, we only use Lij and Sij in
(4.4) for non-zero entries.

To apply our dynamical model (2.11) in this setting, we let Lt have ‘w-band’ struc-
ture with w = 2 at each time t. Setting s = 2, a = 1, b = 0.1, m = 0 and V = 10−3,
N = 100 and M = 100, we repeat the MCMC runs for 7.5 × 104 iterations, burn
in the first 2.5 × 104 and subsample 1 for every 10 to obtain 5 × 103 posterior sam-
ples in the end. Based on those samples, we estimate the underlying correlation func-
tions and only plot selective correlations ρ1,2, ρ3,12, ρ50,51 and ρ99,100 in Figure 7.
With the ‘w-band’ structure, we have less entries in the covariance matrix and fo-
cus on the ‘in-group’ correlation. Our dynamical model (2.11) is sensitive enough to
discern the informative non-zero components from the non-informative ones in these
correlation functions. Unit-vector GP priors provide flexibility for the model to cap-
ture the changing pattern of informative correlations. The middle panel of Figure 7
shows that except ρ3,12 which falls out of the ‘2-band’ as indicated by red circle in
the left panel of Figure 7, the model (2.11) correctly identify the non-zero components
ρ1,2 and ρ99,100 and characterize their evolution. The right panel shows that the rel-
ative Frobenius-norm distance between the estimated and true correlation matrices,
‖P̂ (t) − P (t)‖F /‖P (t)‖F , is small, indicating that our dynamic model (2.11) performs
well with higher dimension in estimating complex dependence structure among multiple
stochastic processes.
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5 Analysis of Local Field Potential Activity

Now we use the proposed model (2.11) to analyze a local field potential (LFP) activity
dataset. The goal of this analysis is to elucidate how memory encoding, retrieval and
decision-making arise from functional interactions among brain regions, by modeling
how their dynamic connectivity varies during performance of complex memory tasks.
Here we focus on LFP activity data recorded from 24 electrodes spanning the dorsal
CA1 subregion of the hippocampus as rats performed a sequence memory task (Allen
et al., 2014, 2016; Ng et al., 2017; Holbrook et al., 2017). The task involves repeated
presentations of a sequence of odors (e.g., ABCDE) at a single port and requires rats to
correctly determine whether each odor is presented ‘in sequence’ (InSeq; e.g., ABCDE;
by holding their nosepoke response until the signal at 1.2s) or ‘out of sequence’ (OutSeq;
e.g., ABDDE; by withdrawing their nose before the signal). In previous work using
the same dataset, Holbrook et al. (2016) used a direct MCMC algorithm to study
the spectral density matrix of LFP from 4 selected channels. However, they did not
examine how their correlations varied across time and recording site. These limitations
are addressed in this paper.

We focus our analyses on the time window from 0ms to 750ms (with 0 corresponding
to when the rat’s nose enters the odor port). Critically, this includes a time period during
which the behavior of the animal is held constant (0-500ms) so differences in LFP reflect
the cognitive processes associated with task performance, and, to serve as a comparison,
a time period near 750ms during which the behavioral state of the animal is known to be
different (i.e., by 750ms the animal has already withdrawn from the port on the majority
of OutSeq trials, but is still in the port on InSeq trials). We also focus our analyses on
two sets of adjacent electrodes (electrodes 20 and 22, and electrodes 8 and 9), which
allows for comparisons between probes that are near each other (<1mm; i.e., 20:22 and
8:9) or more distant from each other (>2mm; i.e., 20:8, 20:9, 22:8, and 22:9). Figure
8 shows M = 20 trials of these LFP signals from D = 4 channels under both InSeq
and OutSeq conditions. Our main objective is to quantify how correlations among these
LFP channels varied across trial types (InSeq vs OutSeq) and over time (within the first
750ms of trials). To do so, we discretize the time window of 0.75 seconds into N = 300
equally-spaced small intervals. Under each experiment condition (InSeq or OutSeq),
we treat all the signals as a 4 dimensional time series and fit them using our proposed
dynamic correlation model (2.11) in order to discover the evolution of their relationship.
Note that we model the mean, variance, and correlation processes separately but only
report findings about the evolution of correlation among those brain signals.

We set s = 2, a = (1, 1, 1), b = (1, 0.1, 0.2), m = (0, 0, 0), V = (1, 1.2, 2); and
the general results are not very sensitive to the choice of these fine-tuning parameters.
We also scale the discretized time points into (0, 1] and add an additional nugget of
10−5In to the covariance kernel of GPs. We follow the same procedure in Section 3.1
to collect 7.5 × 104 samples, burn in the first 2.5 × 104 and subsample 1 for every 10.
The resulting 104 samples yield estimates of correlation processes as shown in Figure
9 for beta-filtered traces (20-40Hz) but similar patterns were also observed for theta-
filtered traces (4-12Hz; see the supplement). The bottom panel of Figure 9 shows the
dissimilarity between correlation processes under different conditions measured by the
Frobenius norm of their difference.
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Figure 8: LFP signals on “in sequence” and “out of sequence” trials. It is difficult to
identify differences between the two conditions based on a mere visual inspection of the
LFPs.

Figure 9: Estimated correlation processes of LFPs (beta) under in-sequence condition
(top), out-of-sequence condition (middle) and the (Frobenius) distance between two
correlation matrices (bottom).

Our approach revealed many important patterns in the data. First, it showed that
electrodes near each other (20:22 and 8:9) displayed remarkably high correlations in
their LFP activity on InSeq and OutSeq trials, whereas correlations were considerably
lower among more distant electrodes (20:8, 20:9, 22:8, and 22:9). Second, it revealed that
the correlations between InSeq and OutSeq matrices evolved during the presentation of
individual trials. These results are consistent with other analyses on learning (see, e.g.,
Fiecas and Ombao, 2016). As expected, InSeq and OutSeq activity was very similar at
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the beginning of the time window (e.g., before 350ms), which is before the animal has
any information about the InSeq or OutSeq status of the presented odor, but maximally
different at the end of the time window, which is after it has made its response on OutSeq
trials. Most important, however, is the discovery of InSeq vs OutSeq differences before
500ms, which reveal changes in neural activity associated with the complex cognitive
process of identifying if events occurred in their expected order. These findings highlight
the sensitivity of our novel approach, as such differences have not been detected with
traditional analyses. Interested readers can find more results about all the 12 channels
in Section E.3 of the supplementary file (Lan et al., 2019).

6 Conclusion

In this paper, we propose a novel Bayesian framework that grants full flexibility in mod-
eling covariance and correlation matrices. It extends the separation strategy proposed
by Barnard et al. (2000) and uses the Cholesky decomposition to maintain the positive
definiteness of the correlation matrix. By defining distributions on spheres, a large class
of flexible priors can be induced for covariance matrix that go beyond the commonly
used but restrictive inverse-Wishart distribution. Furthermore, the structured models
we propose maintain the interpretability of covariance in terms of variance and cor-
relation. Adaptive Δ-Spherical HMC is introduced to handle the intractability of the
resulting posterior. Furthermore, we extend this structured scheme to dynamical models
to capture complex dependence among multiple stochastic processes, and demonstrate
the effectiveness and efficiency in Bayesian modeling covariance and correlation matrices
using a normal-inverse-Wishart problem, a simulated periodic process, and an analysis
of LFP data. In addition, we provide both theoretic characterization and empirical in-
vestigation of posterior contraction for dynamically covariance modeling, which to our
best knowledge, is a first attempt.

In this work, we consider the marginal (pairwise) dependence among multiple sto-
chastic processes. The priors for correlation matrix specified through the sphere-product
representation are in general dependent among component variables. For example, the
method we use to induce uncorrelated prior between yi and yj (i < j) by setting ljk ≈ 0
for k ≤ i has a direct consequence that Cor(yi′ , yj) ≈ 0 for i′ ≤ i. In another word, more
informative priors (part of the components are correlated) may require careful ordering
in {yi}. To avoid this issue, one might consider the inverse of covariance (precision)
matrices instead. This leads to modeling the conditional dependence, orMarkov network
(Dempster, 1972; Friedman et al., 2008). Our proposed methodology applies directly to
(dynamic) precision matrices/processes, which will be our future direction.

To further scale our method to problems of greater dimensionality in future, one
could explore the low-rank structure of covariance and correlation matrices, e.g. by
adopting the similar factorization as in (Fox and Dunson, 2015) and assuming
vechT(Lt) ∈ (Sk)D for some k � D, or impose some sparse structure on the preci-
sion matrices.

We have proved that the posterior of covariance function contracts at a rate given
by the general form of concentration function (van der Vaart and van Zanten, 2008a).
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Empirical evidence (Section 4.2) shows that the posterior of covariance contracts slower
than that of mean. More theoretical works is needed to compare their contraction rates.
Also, future research could involve investigating posterior contraction in covariance
regression with respect to the optimal rates under different GP priors.

While our research has generated interesting new findings regarding brain signals
during memory tasks, one limitation of our current analysis on LFP data is that it
is conducted on a single rat. The proposed model can be generalized to account for
variation among rats. In the future, we will apply this sensitive approach to other
datasets, including simultaneous LFP recordings from multiple brain regions in rats
as well as BOLD functional magnetic resonance imaging (fMRI) data collected from
human subjects performing the same task.

Supplementary Material

Web-based supplementary file for “Flexible Bayesian Dynamic Modeling of Correlation
and Covariance Matrices” (DOI: 10.1214/19-BA1173SUPP; .pdf).
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