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Abstract: We propose an evolutionary state-space model (E-SSM) for analyzing

high-dimensional brain signals, the statistical properties of which evolve over the

course of a nonspatial memory experiment. Under the E-SSM, brain signals are

modeled as mixtures of components (e.g., an AR(2) process) with oscillatory ac-

tivity at predefined frequency bands. To account for the potential nonstationar-

ity of these components (because brain responses can vary throughout an experi-

ment), the parameters are allowed to vary over epochs. Compared with classical

approaches, such as independent component analyses and filtering, the proposed

method accounts for the entire temporal correlation of the components and accom-

modates nonstationarity. For inference purposes, we propose a novel computational

algorithm based on a Kalman smoother, maximum likelihood, and blocked resam-

pling. The E-SSM model is applied in simulation studies and applied to multi-epoch

local field potential (LFP) signal data, collected from a nonspatial (olfactory) se-

quence memory task study. The results confirm that our method captures the

evolution of the power of the components across different phases in the experiment,

and identifies clusters of electrodes that behave similarly with respect to the decom-

position of different sources. These findings suggest that the activity of electrodes

does change over the course of an experiment in practice. Thus, treating these

epoch recordings as realizations of an identical process could lead to misleading re-

sults. In summary, the proposed method underscores the importance of capturing

the evolution in brain responses over the study period.

Key words and phrases: Auto-regressive model, brain signals, state-space models,

spectral analysis, time-frequency analysis.

1. Introduction

The goal of this study is to develop a novel statistical model for investi-

gating the evolution of a brain process during a learning experiment. To infer

brain neuronal activity, electrophysiological recordings such as local field poten-
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tials (LFPs) and electroencephalograms (EEGs) are commonly used to indirectly

measure the electrical activity of neurons. In this study, we consider LFPs from

multiple electrodes that capture the integration of membrane currents in a local

region of the cortex (Mitzdorf (1985)).

In practice, LFPs are observed spatio-temporal signals at different tetrodes.

In a motivating example, an olfactory (nonspatial) sequence memory experiment

was performed in a memory laboratory to study how neurons learn the sequential

ordering of presented odors (Allen et al. (2016)). In this study, LFP recordings

for a rat are obtained from an implanted plate with 12 electrodes. One epoch

corresponds to about one second in physical time. We further study the behavior

of these LFPs by examining their spectra. In Figure 1, we plot box plots of the

log periodograms across all epochs from one electrode. These plots reveal that

LFPs contain power at distinct bands: delta (0–4 Hz), alpha (8–12 Hz), and

the high-beta, low-gamma (30–35 Hz) bands. As an exploratory step, we divide

the entire experiment into three phases: early, middle, and late. In each phase,

we compute the average periodogram (averaged across epochs); see the left side

of Figure 2. On the right side of the figure, we plot the relative periodogram

(obtained by rescaling the periodogram so that the relative periodogram for each

frequency sums to one), and find that the spectral power evolves during the

course of the experiment. During the early phase, power has a broad (rather than

concentrated) spread across bands. However, in the late phase, power seems to

be more concentrated at the lower beta band.

In summary, our preliminary results suggest there exists a strong similarity

in the LFP waveforms across many electrodes. Moreover, the spectra of the LFPs

appear to change across the epochs in the experiment. In a recent study, Gao

et al. (2019) proposed a matrix data-clustering approach that also indicated the

existence of spectra heterogeneity (Gao, Shen and Ombao (2018)). Therefore,

we need a statistical model capable of describing the evolution of LFP signals

over the course of epochs to help understand how the rat learns the sequence of

the odor presentation.

In the literature, LFPs and other electrophysiological signals are commonly

characterized as mixtures of different underlying brain oscillatory processes, and

several approaches have been used to estimate these latent independent sources

(Whitmore and Lin (2016); Einevoll et al. (2007); Prado and Lopes (2013)). For

example, a data-adaptive method such as an independent component analysis

(ICA) or a principal component analysis (PCA) can provide estimates for the

unobserved cortical sources. However, they usually do not take into account the
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spectral structure within the underlying sources that could evolve over the course

of the experiment, given multiple epochs. Moreover, without any constraint on

the structure of the sources, it is extremely difficult to pool information across

epochs in the experiment. Recently, Fiecas and Ombao (2016) studied the dy-

namics of LFPs during the course of an experiment using Cramér representations.

Their approach does not consider low-dimensional representations, which are in-

dispensable to modeling high-dimensional multi-electrode LFPs.

To overcome the aforementioned limitations, we develop an evolutionary

state-space model (E-SSM) that explicitly captures the evolutionary behavior in

high-dimensional time series. The E-SSM shares a similar form to the classical

state-space model (SSM; see Shumway and Stoffer (2013)), but differs in that

the parameters vary across epochs; furthermore, the mixing matrix is unknown,

and therefore has to be estimated. Moreover, the E-SSM manages to capture

the temporal correlation of each of the latent sources by characterizing them

using second-order autoregressive [AR(2)] processes. The reason for choosing

AR(2) is its ability to capture the precise oscillatory behavior of these latent

sources. In particular, by parameterizing these sources as AR(2), we can easily

constrain the power of each source to center at prespecified frequency bands,

such as delta (0–4 Hz), alpha (8–12 Hz), and high-beta gamma (> 30 Hz). These

frequency bands are chosen according to standard convention in neuroscience,

based upon previous electrophysiological data analyses (Deuschl (1999)). The

use of an AR(2) mixture here is analogous to using Gaussian mixture models

in classical density estimation problems. Compared with classical methods such

as the ICA and PCA, the sources produced by the E-SSM are more directly

interpretable in terms of their oscillatory properties.

The main contributions of this study are as follows. First, the proposed

E-SSM model provides a rigorous framework for modeling brain activity and

connectivity, as well as the dynamic behavior of the brain during an experiment.

In particular, our model accounts for the temporal evolution/dependence of the

spectrum power for particular frequency bands throughout the experiment, as

well as the temporal structure among the latent sources. Second, the E-SSM

yields interpretable results by modeling predominant frequency bands associated

with brain functional states using AR(2) processes. Third, we show theoret-

ically that the spectrum of an arbitrary weakly stationary time series can be

approximated by the spectrum of an AR(2) mixture, which gives a theoretical

justification for the use of AR(2) mixtures. We also provide a strong consistency

result for the MLE of the E-SSM. Fourth, by applying the E-SSM model, one
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Figure 1. Log periodogram box plots for each frequency, obtained for all 247 epochs at
electrode T22.
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Figure 2. Left: The heatmap of the averaged periodogram among Phase 1 (epochs 1–
80), Phase 2 (81–160) and Phase 3 (161–247) at electrode T22. The original signals are
rescaled to unit variance. Right: The heatmap of the relative periodogram (summing to
one for each frequency). The spectral power (decomposition of the waveform) evolves
across phases of the experiment. Please refer to the online version for colored figures.

can easily analyze both the time and the frequency domains and, thus, provide

a complete characterization of the underlying brain process. Fifth, the E-SSM

model and the proposed estimation method are, in general, intuitive, and can

be implemented easily owing to the existing theory and algorithms for SSMs.

However, the key difference is the generalization of the multiple epochs setting,

which allows us to pool information across epochs, and provides a flexible mixing

matrix-estimation step.
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2. The E-SSM

In this section, we discuss the models used to infer the latent structures

in LFPs and their evolution across epochs over an entire experiment. We first

describe the model for a single epoch, and then discuss the extension to multiple

epochs.

2.1. SSM for a single epoch

Denote t = 1, . . . , T as the time points in a single epoch, and Yt = (Yt(1), . . . ,

Yt(p))
′ as the observed LFPs, where p is the number of electrodes. For any fixed

time point t, we assume that Yt is a mixture of q latent independent source

signals St = (St(1), . . . , St(q))
′, where q is the number of spatial source signals.

We assume p ≥ q. Then, the model can be expressed as Yt = MSt +εt, where M

is the mixing matrix, εt = (εt(1), . . . , εt(p))
′ is noise that follows N(0, τ2Ip), and

Ip is an identity matrix of dimension p. Each of the independent latent signals

St(l), for l = 1, . . . , q, models the source that represents the oscillatory activity

at a set of prespecified frequency bands (e.g., delta, alpha, and gamma).

Modeling the source signals St

One important parameterization in our model is to constrain the sources to

have an AR(2) structure, such that each represents a particular oscillator: delta

(δ: 0–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–12 Hz), lower beta (β: 12–18 Hz)

and gamma (γ: > 30 Hz). Recall that an autoregressive operator of order 2 is

defined by

φ(B) = 1− φ1B − φ2B2, (2.1)

where B is a backshift operator, defined by B`St = St−`, and φ1, φ2 are the

corresponding coefficients. It can be shown that the spectrum of an AR(2) pro-

cess with noise level σω is fS(ω) = σ2w/(|1− φ1 exp(−2πiω)− φ2 exp(−4πiω)|2).
To illustrate its use in practice, we plot the spectrum of an AR(2) process with

φ1 = 1.976, φ2 = −0.980, and σw = 0.1 in Figure 20 in the online Supplementary

Material. It can be seen that there is a peak at frequency ω = 10 Hz, which

means the frequency band around ω = 10 Hz dominates the process and, thus,

produces the most power. This property of the AR(2) model makes it potentially

useful for characterizing brain signals (such as LFPs) with oscillations at either

broad or narrow frequency bands.

We now explain the connection between the AR(2) coefficients and the spec-

trum (i.e., the location and the spread of the peak). First, the process is causal
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when the roots of the polynomial in Equation (2.1) have magnitudes greater

than one. Furthermore, under causality, Jiru (2008) and Shumway and Stoffer

(2013) demonstrate that when the roots of the polynomial in Equation (2.1) are

complex-valued and have magnitude greater than one, the spectrum attains a

peak centered around the phase of the roots. Moreover, when the magnitude of

the roots becomes larger than one, the peak becomes less concentrated around

the phase.

Motivated by this result, we fix the phase (or argument) of each AR(2)

polynomial root in order to model each of the bands obtained from previous

study results. As noted, fixing the phase is consistent with neuroscience stan-

dards and, thus, will not be a constraint in practice. In the field of neuroscience,

neural oscillations are widely captured at all levels, including LFPs, EEGs and

neuro spike trains (Busch, Dubois and VanRullen (2009)). To characterize these

oscillatory patterns, one typical approach is to convert the original electrophysi-

ological signals to the spectrum domain using a Fourier transformation. In this

way, oscillations can be represented by moduli and phases. The first interesting

frequency band (alpha band) was introduced by Gerrard and Malcolm (2007).

Subsequently, other bands have been studied including the delta, theta, beta, and

gamma bands. As shown in the motivating example in Section 1, our collabora-

tors from neuroscience studied the frequency domain behavior, concluding that

“low-gamma oscillations were more strongly modulated by temporal context and

performance than theta oscillations” (Allen et al. (2016)). Thus, by fixing the

phase in our model, we are able to maintain consistency with neuroscience stan-

dards, which means there is not a constraint in practice. To model the evolution

across epochs, we allow the modulus of the AR(2) polynomial roots to change

among epochs. As a result, because the phases of the roots for each of the latent

independent source signals are fixed, the AR(2) process is uniquely determined

by the modulus and the variance. In practice, the value of modulus controls the

spread of the spectrum curves. For an AR(2) process St = φ1St−1 +φ2St−2 +wt,

the modulus ρ and phase ψ of the roots of the polynomial have the relationship

that φ1 = 2ρ−1cos(ψ) and φ2 = −ρ−2. This is analogous to using a Gaussian

mixture model (or any location-scale mixture, in general) for density estimation.

Generalized SSM

Following the previous discussion, the latent independent spatial source signals

are modeled as multivariate AR(2)s, St = Φ1St−1 + Φ2St−2 + ηt, where Φ1 =

diag(φ11, . . . , φq1), and Φ2 = diag(φ12, . . . , φq2) ∈ Rq×q are diagonal matrices,
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and the noise ηt = (η1(t), . . . , ηq(t))
′ ∼ N(0, σ2Iq). The final model can hence

be viewed as a generalized SSM:

Yt = M̃Xt + εt,

Xt = Φ̃Xt−1 + η̃t,
(2.2)

where Xt = (S′t,S
′
t−1)

′, M̃ = (M,0) ∈ Rp∗2q, Φ̃ =

[
Φ1 Φ2

Iq 0

]
, and η̃t = (η′t,0)′.

Note that the residual εt is assumed to be independent over time t. This implies

that all temporal correlations are characterized by the underlying latent signals

St. The model in (2.2) is not a regular SSM, because the mixing matrix M̃

is unknown. Moreover, following the aforementioned discussion, the coefficients

of the autoregressive processes are determined by the modulus ρ = (ρ1, . . . , ρq)

and phase ψ = (ψ1, . . . , ψq) of the autoregressive polynomial roots. Because we

are interested in particular frequency bands, we fix the phase ψ, and the state

equation in (2.2) is parameterized by ρ and σ2.

2.2. E-SSM for multiple epochs

Next, we generalize the model in Section 2.1 to accommodate multiple epochs.

We assume that across epochs, the mixing matrix M is fixed, and that the la-

tent independent autoregressive processes evolve through the modulus ρ. This

assumption implies that the cortical structure remains unchanged across epochs

for each individual. We denote the epochs in the experiment as r = 1, . . . , R.

Then the model is given by

Y
(r)
t = M̃X

(r)
t + ε

(r)
t ,

X
(r)
t = Φ̃(r)X

(r)
t−1 + η̃

(r)
t ,

(2.3)

where the definitions of Y
(r)
t , M̃ ,X

(r)
t , Φ̃(r), ε

(r)
t , and η̃

(r)
t are similar to those in

Equation (2.2), except for the additional superscript for epoch r.

In the proposed model, we assume an autoregressive structure that evolves

across epochs. This assumption is inspired by the preliminary analysis in Sec-

tion 1, which showed that the power spectrum evolves during the experiment.

Accordingly, the evolutionary spectrum of each latent source will be captured eas-

ily in explicit form as f (r)(ω) = σ
2(r)
w /(|1−φ(r)1 exp(−2πiω)−φ(r)2 exp(−4πiω)|2).

We also assume that the mixing matrix is invariant to epochs. This is because

the network structure of subjects does not change across the phases of the exper-
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iments. To reiterate, the nonstationarity is captured by the AR(2) coefficients.

The literature includes numerous discussions on identifiability issues related

to SSMs (Hamilton (1994)). Indeed, for a general SSM, the same representation

can be obtained by applying an orthogonal transformation on matrices. Zhang

and Hyvärinen (2011) proposed a nonGaussian constraint to avoid the identifi-

ability issue. In this study, to ensure the uniqueness of the solution, we require

that each component of the latent independent source signals S(t) have unit

variance, and that the entries of M̃ be positive.

3. Inferences for the E-SSM

3.1. Estimating the E-SSM

For the E-SSM with a single epoch, we propose an iterative algorithm that

incorporates a Kalman filter and the least squares method for parameter esti-

mation purposes. Further details are given in Section 3 of the Supplementary

Material.

Next, we extend the previous method to a multiple epoch setting in Equa-

tion (2.3). Here, the major challenge lies in pooling information from different

epochs in order to estimate the epoch-invariant mixing matrix. Inspired by the

resampling approach used to model time series with a Gaussian process (Gao,

Shahbaba and Ombao (2018)) and the linear mixed model (Cheng et al. (2014)),

we propose a blocked resampling-based approach. The key idea of the approach

is as follows. First, we divide the epochs into blocks; then, for each block, we

estimate the corresponding mixing matrix and the epoch-specific AR(2) param-

eters. These blocks retain the temporal sequence of the epochs, and the final

estimate at a previous epoch serves as the initial estimate of the mixing matrix

at the current epoch. The final estimates of the mixing matrix obtained from

each block are averaged to produce the estimate for the common mixing matrix.

For the next step, given the estimated mixing matrix, we follow Algorithm 1

to obtain estimates of the epoch-specific AR(2) parameters. The approach is

summarized below.

II.A We fix the length of the blocked resampling sampler as l. We draw the

starting epoch index s from the set {1, . . . , R− l+ 1}. Then, at the current

iteration, the blocked resampling sampler is ({Y (s)
t }Tt=1, . . . , {Y

(s+l−1)
t }Tt=1).

A.1. Starting with epoch s, we implement the approach for a single

epoch in Section 2.1 on {Y (s)
t }Tt=1to obtain the estimates M̃ (s).
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A.2. Starting with epoch s + 1 and the initial value M̃ (s), we repeat

A.1 to obtain the estimates M̃ (s+1).

A.3. We repeat A.2 until the last epoch s + l − 1. We denote the fi-

nal estimates M̃ (s+l−1) as the ultimate estimates of the resampling sampler

({Y (s)
t }Tt=1, . . . , {Y

(s+l−1)
t }Tt=1). The pipeline of the procedure is summa-

rized below:
Y

(s)
1

Y
(s)
2

· · ·
Y

(s)
T

→ M̃ (s) →


Y

(s+1)
1

Y
(s+1)
2

· · ·
Y

(s+1)
T

→ M̃ (s+1) · · · →


Y

(s+l−1)
1

Y
(s+l−1)
2

· · ·
Y

(s+l−1)
T

→ M̃ (s+l−1).

II.B. Repeat II.A until a sufficient number of resampling estimates is obtained.

Compute the average of those estimates, defined by M̃g, as the global esti-

mate of M̃ .

II.C. Substitute the global estimate M̃g into each epoch. Following Algorithm

1 for each epoch, we obtain the estimates of ρ(r), σ2
(r)

, and τ2
(r)

, for r =

1, . . . , R.

The overall work flow is given in Figure 10 of the Supplementary Material.

Note that because the mixing matrix M̃ is the same across epochs, we use the

blocked resampling strategy to obtain the global estimates sequentially. Given

that estimate, we proceed to make an inference on each epoch. For the choice of

the length l, we recommend starting with l = CR1/k, and then increasing l until

a stable result is obtained, where k = 3, 4, C is a constant, and R is the number

of epochs.

3.2. Testing for differences across epochs

Inspired by the preliminary results shown in Figure 3, we assume that all

epochs can be divided into different phases, among which there exist discrepancies

in Φ̃(r). In order to test whether such differences in Φ̃(r) are significant across

phases, we propose a permutation test in which we shuffle the epochs between

phases, and then implement the E-SSM to obtain the parameter estimates and

their reference distributions. We provide a simulation example to demonstrate

its use in Section 6.
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4. Theory

We start with a strong consistency result for the MLE of the proposed E-

SSM model. Denote Θ = (M, Φ̃(1), . . . , Φ̃(R)) as the collection of parameters in

the multiple epoch model in (2.3). Let Θ̂ and Θ0 = (M0,Φ
(1)
0 , . . . ,Φ

(R)
0 ) be the

MLE and the true value of Θ, respectively. Theorem 1 below states that, under

mild conditions, Θ̂ is a strongly consistent estimator for Θ0.

Theorem 1. Suppose that the AR(2) process in the definition of S
(k)
t (2.3)

is causal for every epoch k = 1, . . . , R. Assume M0 is of full column rank,

(Φ
(1)
0 , . . . ,Φ

(R)
0 ) is of full row rank, and every parameter (matrix) in Θ0 belongs

to a known compact support. Then, Θ̂ converges to Θ0, almost surely.

The assumptions in Theorem 1 are easily satisfied in many situations. For

example, in our case, Φ
(i)
0 , for i = 1, . . . , R, are diagonal matrices in which the

elements are AR(2) coefficients centered at prespecified frequency bands. As long

as these bands are different, this assumption is satisfied. The consistency result

also applies for the single-epoch model (2.2) by letting the number of epochs

R = 1. The proof of the theorem, which we defer to the Supplementary Material,

is based on the consistency results for the general hidden Markov model in Douc

et al. (2011). Next, we give an AR(2) decomposition theorem, stating that the

spectrum of any weakly stationary process can be approximated by that of a

linear mixture of AR(2) processes. This result provides a theoretical justification

for representing individual sources by AR(2) models, owing to their ability to

present each source signal at prespecified frequency bands.

Theorem 2. Let Yt be a weakly stationary time series with zero mean and

continuous spectrum fY (ω). Let 0 = ω0 < ω1 < · · · < ωJ = 1/2, and ξ =

maxJ
j=1 |ωj − ωj−1|. Denote S

(j)
t , for j = 1, . . . , J , as independent AR(2) pro-

cesses with unit variance and spectrum fS(j)(ω), such that the phase of its AR

polynomial roots, denoted by ψ(j), satisfies ψ(j) ∈ [ωj−1, ωj). Consider a family of

processes {Qt,J}∞J=1 defined by Qt,J =
∑J

j=1 ajS
(j)
t with nonnegative coefficients

{aj}Jj=1, and let FJ be the collection of spectra of {Qt,J}. Assume that ξ → 0 as

J →∞. Then,

inf
f∈FJ

‖fY − f‖2 → 0 as J →∞. (4.1)

Moreover, if fY is Lipschitz continuous and ωk = k/(2J), for k = 0, . . . , J , then

for any sufficiently large J and some positive constant C,

inf
f∈FJ

‖fY − f‖∞ < CJ−1. (4.2)



EVOLUTIONARY STATE-SPACE MODEL 1571

Theorem 2 states that the minimum approximation error of the spectrum

from a class of finite mixture AR(2) models is negligible, given that the number

of terms J goes to infinity. In other words, the AR(2) mixture gives a consistent

estimate of the spectral density, given that J is chosen to be sufficiently large.

Moreover, if we assume that the frequencies ωk are equally spaced, then the

convergence rate is essentially equivalent to that of the equally spaced Fourier

series based on a Jackson-type inequality. The convergence rate for a finite

Fourier series with nonuniformly spaced frequency bands is still unknown, to the

best of our knowledge (Epstein (2005)). The proof of the theorem is given in

Section 2 of the Supplementary Material.

5. A Comparison with Existing Methods

Here, we discuss a few major differences between our method and existing

approaches, including the ICA and classical SSMs.

The ICA has been widely used in single/between-subject electrophysiolog-

ical exploratory analyses. For example, Makarova et al. (2011) proposed an

ICA method to segregate pathways using partially overlapped synaptic terri-

tories from hippocampal LFPs. To investigate the variability across different

subjects or subgroups, Guo (2011) proposed a general group probabilistic ICA

(pICA) framework, which was later extended (Wang and Guo (2018); Lukemire

et al. (2018)), to accommodate cross-subject structures in multi-subject spatial-

temporal brain signals. Although these methods work well under certain settings,

there is still much room for improvement in modeling electrophysiological signals.

First, they do not have a mechanism for capturing how the parameters (and spec-

tral properties) of the latent source signals evolve across epochs over an entire

experiment. Most existing methods concatenate the signals from different epochs,

and then estimate the parameters as though these signals are realizations of the

same underlying process. However, because the “reconstructed” latent sources

vary across epochs, there is no rigorous framework for modeling how these pa-

rameters may change across epochs. Second, existing methods do not take into

account the temporal structure of the latent sources. In fact, these sources are

estimated for each time point, independently of the other time points. Third,

current ICA methods for source modeling may not produce interpretable results

from a spectral analysis of electrophysiological signals. In fact, brain researchers

have observed an association between the power at different frequency bands and

brain functional states (Michel et al. (1992)). Thus, a framework is necessary
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that accounts for the evolution of the power at these frequency bands over many

epochs. Lastly, there are limitations to the connections between time and fre-

quency domain analyses. Methods for time and frequency domains are developed

almost exclusively from each other. However, this is counter-intuitive, because

these two approaches ought to be used concurrently in order to give a complete

characterization of brain processes.

6. Simulation Studies

6.1. Results of a single epoch analysis

We first evaluate the proposed E-SSM under the single epoch setting. We

simulate data from three independent AR(2) processes that correspond to delta

(δ: 0–4 Hz), alpha (α: 8–12 Hz), and lower beta (β: 12–18 Hz). We randomly

generate a positive “mixing” matrix M , and fix the number of electrodes of

the observational brain signals to 20. In summary, following the notation in

Section 2.1, we have the following: p = 20, T = 1, 000, q = 3, τ2 = 1, σ2 =

0.1, (ρ1, ψ1) = (1.0012, 2), (ρ2, ψ2) = (1.0012, 8), (ρ3, ψ3) = (1.0012, 15).

We implement the method proposed in Section 2.1, and plot the periodograms

of the true and reconstructed signals in Figure 1 in the Supplementary Material.

The estimated source signals share the same shape as the true signals. We also

compare the results with those of the ICA in Figure 11 in the Supplementary Ma-

terial. It is clear that the ICA is unable to recover the three latent bands, whereas

our method manages to separate the spectral components very accurately. These

results are consistent with our discussion on the possible drawbacks of the ICA.

6.2. Results of the multiple-epoch analysis

Here, we evaluate the performance of the proposed method for multiple

epochs. We choose 20 electrodes and three latent independent AR(2) processes.

To model the evolution across epochs, we allow the modulus (ρ
(r)
1 , ρ

(r)
2 , ρ

(r)
3 ) to

increase from (1.001, 1.001, 1.001), with an increment of 0.00005, as the epoch

r propagates. All remaining parameters are the same as those in Section 6.1.

Figure 2 in the Supplementary Material shows a heatmap of the periodogram

from electrode 1 as the epochs evolve. The results look satisfactory. Figure 3 in

the Supplementary Material shows the periodograms of the true and estimated

signals from the three underlying AR(2) processes. For the delta, alpha, and

lower-beta bands, we can see the peaks at the corresponding dominating fre-

quencies from the true and estimated signals. As the epochs evolve, we find that
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the true and estimated periodograms both spread out around the dominating fre-

quency, indicating that the pattern of the periodograms from the reconstructed

AR(2) process is consistent with that of the true AR(2) process.

We also applied an ICA to the simulated data set; the results are shown

Figures 12 and 13 in the Supplemenart Material. As expected, the ICA barely

separates the three underlying latent sources, and rarely captures the spread of

power as the epoch evolves. This supports our previous discussion that the ICA

neglects the dynamics across epochs.

6.3. Results for settings derived from the data

Here, we simulate data using the parameter setting from the motivating

example from the sequence memory study. We use the estimated modulus (ρ̂
(r)
1 ,

ρ̂
(r)
2 , ρ̂

(r)
3 ), variances (σ̂2(r), τ̂2(r)), and mixing matrix M̃ to generate signals across

12 electrodes and 247 epochs. To evaluate the performance of the E-SSM, we

also apply the classical SSM estimation methods as a benchmark. Specifically,

we fit an SSM for each epoch, and obtain the epoch-specific parameter estimates.

Note that this is the approach that most existing methods use to analyze signals

with multiple epochs. As an alternative, we also compute the average of the

epoch-specific estimates.

We compare the mean squared errors (MSEs) of the parameters obtained

from the E-SSM and SSM. In Table 1, it is clear that the E-SSM successfully

captures the evolution of the parameters, in contrast to the classical SSM. Across

all frequency bands, the benefits are significant. These results highlight the

advantages of using the E-SSM when signals comprise multiple epochs. At the

same time, it also indicates the potential loss of information if we naively average

over all epochs when conducting an analysis.

As a comparison, we also applied the ICA to the simulated data set. The

results in Figures 14 and 15 in the Supplementary Material suggest that our

method manages to estimate the mixing matrix very accurately, whereas the

ICA misses most of the patterns across the electrodes. Figures 16 and 17 in the

Supplementary Material show the periodograms obtained from our method and

the ICA, respectively. Once again, the ICA is unable to recover the true signals

or identify the dynamics across epochs.

6.4. Results of the permutation test

Following similar strategies to those in the previous simulations, we generated

five latent AR(2) processes, corresponding to delta, theta, alpha, lower-beta and
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Table 1. MSE obtained from the E-SSM and SSM (benchmark)

Parameters E-SSM SSM (average) SSM (single)

Φ̃ (delta band) 3.33 × 10−5 7.27× 10−5 5.53× 10−5

Φ̃ (alpha band) 1.41 × 10−5 3.23× 10−5 2.89× 10−5

Φ̃ (gamma band) 1.69 × 10−5 8.07× 10−5 2.00× 10−5

τ2 9.31 × 10−6 2.03× 10−4 1.91× 10−4

σ2 1.93 × 10−1 1.93× 10−1 1.91× 10−1

Table 2. Type-I error/power table of the proposed permutation test.

δ(ρ) = 0 δ(ρ) = 1 δ(ρ) = 2 δ(ρ) = 3 δ(ρ) = 4

Scenario A
ρ2 0.056 0.110 0.586 0.966 0.924

ρ5 0.046 0.112 0.600 0.992 0.955

Scenario B
ρ2 0.050 0.108 0.418 0.844 1.000

ρ5 0.047 0.268 0.586 1.000 1.000

gamma bands. We assumed there are two phases, with 40 epochs in total. In

Scenario A, we fixed modulus ρ
(r)
i = 1.001, for i = 1, . . . , 5, r = 1, . . . , 20, in

Phase 1. We then changed the values of ρ
(r)
2 , ρ

(r)
5 in Phase 2, and denoted δ(ρ) as

the modulus difference between phases. In Scenario B, we allowed the modulus

to slowly increase by 5× 10−5 starting from 1.001 in Phase 1, and from various

values in Phase 2. The other parameters remained the same as those in the

previous simulation settings. Table 2 summarizes the proportion of rejecting the

null hypothesis, based on 1, 500 replications. It can be seen that the Type-I error

rates are close to the nominal level of .05, and that the power increases to one

rapidly under both scenarios.

6.5. Sensitivity analysis

We conducted an extensive sensitivity analysis to investigate the performance

of the proposed E-SSM when the underlying model assumption is violated, in-

cluding when the number of AR(2) mixture components is mis-specified, and

when the underlying signal deviates from an AR(2) process. For a detailed dis-

cussion, see Section 4 in the online Supplementary Material.
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7. Analysis of LFP Data from Olfactory Sequence Memory Study

7.1. Data description

The LFP data set was obtained from an experiment that searched for direct

evidence of coding for the memory of sequential relationships between nonspatial

events (Allen et al. (2016)). During the experiment, rats were provided with a

series of five odors, multiple times. Then, as the rats performed tasks, LFPs

were recorded in the CA1 pyramidal layer of the dorsal hippocampus. The LFP

data set in this study incorporates 12 electrodes and 247 epochs. Each epoch is

recorded over one second, aligned to port entry, and sampled at 1,000 Hz and,

thus, has T = 1, 000 time points.

7.2. Exploratory analysis

We are interested in addressing two questions. First, we wish to determine

how the original high-dimensional signals can be sufficiently represented by lower-

dimensional summary signals. Second, we wish to assess whether and how the

spectral properties of the LFP signals evolve across epochs during the experiment.

To address the first question, we note the assertion in other studies (e.g.,

Makarova et al. (2014)) that the natural geometry of these neuronal assemblies

gives rise to possible spatial segregation. This suggests that it is plausible to

represent LFP data using lower-dimensional summaries. In this nonspatial se-

quence memory study, we observe a similar pattern across all 12 electrodes. In

Figure 21 in the Supplementary Material, although the power varies within each

electrode, the synchrony of the pattern across electrodes is still critical. For ex-

ample, electrodes T13 and T14 behave almost identically. Electrodes T7, T8,

and T9 also follow the same pattern during the experiment. Moreover, as part

of this exploratory analysis, we conducted a spectral PCA (Brillinger (1964)),

which is widely used in exploratory analyses of brain imaging data (Wang, Ting

and Ombao (2016); Wang et al. (2019)). Figure 7 in the Supplementary Ma-

terial presents box plots of the percentage of variability accounted for by the

first one and the first three components. It can be shown that three components

(a mixture of delta, alpha, and gamma bands) account for roughly 92% of the

variability, with the first component accounting for 70%. These findings validate

the assumption that the original LFPs can be projected into low-dimensional

source signals, without substantial loss of information. In this paper, we build

on this preliminary analysis by giving a more specific characterization of these

signal summaries or components using the AR(2) process.
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Figure 3. The evolution of the power spectrum among delta (0–4 Hz), alpha (8–12 Hz)
and gamma (30–35 Hz) bands. Each band is averaged over all electrodes. Please refer
to the online version for colored figures.

To address the second question, we examined the log periodogram box plots

in Figure 1 across all frequencies. Here, we find that the powers are quite spread

out, especially at lower frequencies and at the two peaks around the delta and

slow gamma bands. The heatmap in Figure 2 illustrates the dynamics of the

early, middle, and late stages of the overall session. Figure 21 in the Supple-

mentary Material shows how the power ecolves across all electrodes, particularly

on the delta, alpha, and gamma bands. It shows that higher-frequency bands

dominate in the early stage, but that lower- frequency bands capture more power

during the experiment. In Figure 3, an interesting pattern emerges: the burst of

gamma activity in Phase 1 of the epochs is not replicated in the other phases.

One possible interpretation is that the odor sequence (on which the animals

have had extensive training) is re-encoded early in each session, which requires

high-frequency (gamma) activity. However, later in the session, the gamma ac-

tivity is regulated, and other lower frequencies (delta and alpha) become more

prominent. Further research is necessary to identify the latent lower-dimensional

source signals that drive the observed LFPs.

7.3. Results and discussion

We applied our proposed E-SSM method to this study. Figure 8 in the

Supplementary Material shows time series plots of the modulus (root magnitudes)

corresponding to each of the three frequency bands as the epochs evolve. In this

plot, we can clearly identify the evolution of each individual module and a strong
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Figure 4. The periodograms of the estimated latent AR(2) processes corresponding to
delta (top), alpha (middle), and gamma (bottom) bands. Please refer to the online
version for colored figures.

temporal dependence. Figure 4 displays the power of the three latent source

signals evolving during the experiment. We observe that the delta band captures

the most power among the bands, and is persistent across all phases. The alpha

band attains its maximum power during the early phase, diminishes quickly in

the middle stage, and obtains more power in the final stage. There appear

to be discontinuities in the delta, alpha, and gamma power across the entire

experiment. One interpretation of these results is that these on-off patterns could

simply be random variation. Another is that they denote the resetting of neuronal

responses. This phenomenon of phase resetting in neurons is also observed in

many biological oscillators. In fact, it is believed that phase resetting plays a

role in promoting neural synchrony in various brain pathways. Nevertheless, it is

imperative to be cautious about blindly assuming that a neuronal process behaves

identically across epochs, because doing so could produce misleading results.

We also study the mixing matrix to investigate how electrodes are associated

across the three frequency bands. From Figure 5, at the delta band, electrodes

T13, T14, T16, T19, T22, and T23 are likely to be linked in terms of large power.

Electrodes T15, T2, T7, T8 , and T9 share the lowest power. At the alpha band,

electrodes T16, T22, and T23 maintain the most power; in contrast, electrodes

T15, T2, and T7–9 obtain the lowest power. This pattern of association may

result from the anatomical connections. Similarly, at the gamma band, electrodes
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Figure 5. The estimated mixing matrix. Darker colors represent heavier weights given
by the latent processes (delta, alpha, gamma) on the LFPs. Please refer to the online
version for colored figures.

are connected in the same way as at the alpha band. We also used a cluster

analysis on the entries of the “mixing” matrix to understand the connections

between the electrodes. Similarly to the results shown in Figure 5, we are able to

identify the same pattern in Figure 6 using a visualization of the cluster analysis.

At the delta band, electrodes T13, T14, T16, T19, T20, T22, and T23 share the

same pattern, while T3, and T7–9 are in the same cluster. Clusters at the alpha

and gamma bands are roughly identical, which supports the results in Figure 5.

To the best of our knowledge, this approach (i.e., clustering of electrodes or

nodes) has not been used previously for this kind of analysis. This has potential

for future explorations on synchrony among neuronal populations. Finally, note

that the specific parametric AR(2) structure in our E-SSM facilitates ease of

interpretation of the oscillatory activity of these sources.

Model validation and diagnostics were performed using sample auto-correl-

ations (ACF) and partial auto-correlations (PACF), calculated from the residu-

als. Figure 9 in the Supplementary Material shows an example of values obtained

from a representative electrode. We can easily observe the uncorrelated structure

among the residuals. A p-value of 0.75, based on the Ljung-Box test, provides

further evidence of white noise residuals and, thus, we conclude that the proposed

E-SSM fits this LFP data well.
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delta frequency band alpha frequency band gamma frequency band

Figure 6. Cluster analysis results among all three frequency bands. The same color
indicates the same cluster. Please refer to the online version for colored figures.

8. Conclusion

We have proposed an E-SSM that allows the latent source signals to evolve

across epochs. Although the results reported in this paper are quite promising,

nevertheless, modeling the evolution/dynamics across epochs remains a challenge

in general. For example, we have ignored subject-specific random effects, which

should be taken into account in future work. In the simulation studies, we set

the phase parameter to the true values used in simulating the data. We also

tried using estimates from the true data. This was done by first calculating

the periodograms for each channel and trial, and then choosing the frequencies

with peaks located as the phase parameters. Although these estimated phase

parameters deviated slightly from the true values in some cases, the estimated

periodograms were able to capture the structure of the true latent sources. These

findings are consistent with the results from the sensitivity analysis.

In addition, we chose to fix the locations of the spectrum peaks at pre-

determined values. In a frequency domain analysis, there are basically two

approaches to obtaining the power for particular bands: average and integral

(Delorme and Makeig (2004)). Specifically, using the average is more straight-

forward, but it neglects the range of frequency bands (e.g., theta: 4–8 Hz vs.

lower-beta: 12–18 Hz). Using the integral is more complicated and more sen-

sitive to the choice of the range of frequency bands. A common observation in

practice is that lower-beta bands are usually more “flattened out” than theta

bands when using the average approach. The key point to both approaches is to

find a “center” for each frequency band. In our model, because each latent AR(2)

process corresponds to a particular band, we choose the center of the range as

the exact phase parameter for each frequency band. For example, we fix the

phase at 10 Hz for the alpha band. There are a few reasons to do so. First, from

the existing literature, the power spectra of particular frequency bands most of-



1580 GAO ET AL.

ten achieve their peaks at the center of the range (Buzsaki (2006)). Second, by

fixing the peak beforehand, we can avoid identifiability issues. If we let the data

drive the estimates of the location, we could run into the identifiability problem

easily; that is, we can change the columns of the mixing matrix and their corre-

sponding AR(2) sources to get the same observed signals. Third, we conducted

sensitivity analyses on different peaks within each band. The results show that

the “constructed” signals are quite similar to the original ones. Fourth, recent

studies (e.g., Allen et al. (2016)) report that the approach of using the center of a

range produces consistent and interpretable results. In future research, it will be

of interest to develop a more flexible methodology that takes into account data

uncertainty when determining the location of spectrum peaks.

Note that the spectrum of a weakly stationary process being approximated

by the spectrum of an AR(2) mixture does not necessarily imply that the orig-

inal process is approximated by the AR(2) mixture. The focus of this study is

motivated by a frequency-domain analysis of the imaging data, where the actual

LFP values are not as important as their frequency-domain implications. Thus,

further research should develop new models based on AR(2) mixture processes

(or any other meaningful basis in practice) within a time-domain framework.

Supplementary Material

Technical proofs, an additional simulation, and data analysis results are pro-

vided in the online Supplementary Material.
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