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Abstract Our goal is to model and measure functional and effective (directional)
connectivity inmultichannel brain physiological signals (e.g., electroencephalograms,
local field potentials). The difficulties from analyzing these data mainly come from
two aspects: first, there are major statistical and computational challenges for mod-
eling and analyzing high-dimensional multichannel brain signals; second, there is no
set of universally agreed measures for characterizing connectivity. To model multi-
channel brain signals, our approach is to fit a vector autoregressive (VAR) model with
potentially high lag order so that complex lead-lag temporal dynamics between the
channels can be captured. Estimates of the VAR model will be obtained by our pro-
posed hybrid LASSLE (LASSO+LSE) method which combines regularization (to
control for sparsity) and least squares estimation (to improve bias and mean-squared
error). Then we employ some measures of connectivity but put an emphasis on par-
tial directed coherence (PDC) which can capture the directional connectivity between
channels. PDC is a frequency-specific measure that explains the extent to which the
present oscillatory activity in a sender channel influences the future oscillatory activity
in a specific receiver channel relative to all possible receivers in the network. The pro-
posed modeling approach provided key insights into potential functional relationships
among simultaneously recorded sites during performance of a complex memory task.
Specifically, this novel method was successful in quantifying patterns of effective con-
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nectivity across electrode locations, and in capturing how these patterns varied across
trial epochs and trial types.

Keywords Electroencephalograms · Local field potentials · Brain effective
connectivity · Multivariate time series · Vector autoregressive model · Partial directed
coherence

1 Introduction

Connectivity between populations of neurons is crucial to fully characterize brain
processes during cognition (e.g., memory and learning) and even during resting-state.
Moreover, alterations in brain connectivity are widely believed to be implicated in a
number of neurological and mental diseases such as obsessive compulsive disorder
and Alzheimer’s disease. However, the underlying mechanisms of brain connectivity
remain elusive. First, there is no set of universally agreed measures for characterizing
connectivity. Second, there are major statistical and computational challenges for
modeling and analyzing multichannel brain signals—especially when the number
of parameters is large which often happens when the number of channels is large
and/or the temporal lag for parametric models such as vector autoregressive (VAR) is
high. Our contribution in this paper is a scalable approach to estimate connectivity in
multichannel brain physiological signals modeled with high-dimensional parameters.

The work is motivated by our current collaborations with the Fortin Laboratory
(UC Irvine) whose research requires developing a systematic statistical framework to
quantify functional and effective connectivity among multi-site neural activity signals
recorded in rats performing complex memory tasks. The electrophysiological data
recorded from rats include local field potentials (LFPs) and an example of a record-
ing for one epoch (here an epoch is 1 second time block) is given in Fig. 1. LFP
signals have excellent temporal resolution (here 1000 observations per second). It
is comparable to electroencephalograms (EEGs) in terms of temporal resolution and
both capture electrical activity of the neurons. However, LFPs are recorded invasively
since these are obtained from electrodes that are chronically implanted inside the brain.
Because LFPs are obtained from implanted electrodes, they have lower contamina-
tion compared to scalp EEGs. They contain less non-neuronal physiological activity
(e.g., muscular activity) and therefore possess a higher signal-to-physiological-noise
ratio. One disadvantage of LFPs, however, is its limited utility in humans due to its
invasive nature. However, these will continue to be a valuable tool for investigating
brain function in animals which can then provide useful information for modeling
brain function in humans. One of the challenges to fitting statistical models to LFPs is
that the parameter space can be high dimensional. The number of recording tetrodes
(P) in LFPs can range from 8 to 100; and the temporal order (d) of parametric models
such as vector autoregressive (VAR) models needs to be sufficiently large in order
to accurately capture the dynamics in these complex processes. In this setting, the
number of parameters in a VAR model is P2d, which can be large.

In this paper, we will develop a computationally scalable method for fitting high-
dimensional complex models that addresses two important goals in brain science:

123



Stat Biosci

0 200 400 600 800 1000

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

LFP recordings from 12 tetrodes during Epoch 10

Time in milliseconds (ms)

Fig. 1 Local field potential (LFP) recordings from 12 tetrodes during one epoch (1000 ms; T = 1000).
Each time series with color indicates the LFP recording from one tetrode

(1) To identify the connectivity structure between channels in a brain network and
(2) to quantify both the strength and directionality of connectivity between these
channels. Our approach is to fit a VAR model with potentially high temporal lag in
order to more accurately capture complex lead-lag temporal dynamics between the
channels or leads. Estimates of the VAR model will be obtained by a combination
of regularization to maintain high specificity and least squares estimation to reduce
bias and mean-squared error. The method will be applied to LFPs obtained from a rat
performing an odor sequence memory task, in which he is required to identify each
odor as being presented in the correct or incorrect sequence position.

To characterize connectivity in a multichannel LFP signal, we shall use the vector
autoregressive (VAR) model [24]. A P-dimensional brain signal Xt is said to follow
a VAR model of order d, denoted VAR(d), if it has the representation

Xt = �1Xt−1 + · · · + �dXt−d + εt , t = d + 1, . . . , T, (1.1)

where��’s∈ RP×P are the autoregressive coefficient matrices and εt
i id∼ NP (

−→
0 , �).

The interconnectivity between channels is determined by the autoregressive coefficient
matrices {��}d�=1 and spatial covariance matrix �. Thus, the VAR model provides a
broad framework for capturing complex temporal and cross-sectional interrelationship
among the time series (in particular, directionality of frequency-specific connectivity).
Consequently, it can be applied to model the Granger-causal relation between chan-
nels [14].
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Fig. 2 LFP traces and VAR. �uv
�

(� = 1, 2) captures the impact of the input from vth channel at time t − �

to brain activity at uth channel at the current time t (Color figure online)

To illustrate connectivity via the VAR matrix, consider Fig. 2 and denote the LFP
traces of brain region to be uth and vth channel. Then the entry �uv

� shows the impact
of the input from vth channel at time t − � to brain activity at uth channel at the
current time t . If �uv

� = 0 and �vu
� = 0 for all lags � then, there is no connectivity

between these two channels as determined by VAR model. A positive value indicates
that the signal of vth channel at time t − �, conditional on LFP values at other times,
has positive linear dependence with uth channel at time t . That is, a marginal increase
in activity in vth channel leads to a increased future activity in uth channel. Thus, the
entries of {��}d�=1 contain the information of brain connectivity between channels. In
this paper, we shall use partial directed coherence (PDC) [4,5] to characterize effective
(directed) connectivity. This measure is more specific and provides more information,
in particular frequency-specific directionality, than simply the coefficients of the VAR
matrices. PDC is frequency specific: it measures how an oscillatory activity (at a
particular frequency band) at a present time in one channel may impact oscillatory
activity of the same frequency band at another channel at a future time point.

As noted above, effective connectivity between channels will be characterized by
the VAR coefficient matrices. This is challenging because the parameter space of a
VAR model for brain signals is usually high. For example, if we fit a VAR(10) model
to 12 leads or channels, there are 10 × 122 = 1440 parameters in total to estimate,
which subsequently requires intensive computation. One could suggest fitting a model
with low temporal lag in order to reduce the number of parameters. The problem with
this suggestion, unfortunately, is that a low temporal order might miss potentially
important features of the data such as multiple peaks in the spectra.

One classic estimation approach is via least squares which (as long as there are
sufficient data points) provides unbiased estimator for the elements of the VAR coeffi-
cient matrices but at the cost of high demand of computing. The least squares estimate
(LSE) does not possess the specificity for coefficients with true value of zero. Hence,
it cannot provide an adequate answer to the first question about identifying function-
ally connected regions in brain network. Another common estimation approach is the
LASSO (least absolute shrinkage and selection operator) method which is a particular
representative of the penalized regression family [12,25–27]. Compared with LSE, the
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LASSO approach requires smaller computation time [19]. Most importantly, LASSO
has higher specificity of zero-coefficients. Themain limitation of theLASSO(andmost
regularization methods) is that the estimators of the non-zero coefficients are biased.
Thus, it could lead to misleading results when investigating strength of brain effec-
tive connectivity. Inspired by the strengths of each of the two classical approaches
(i.e., LSE and the LASSO), we propose to combine these in a two-step estimation
procedure which we call the LASSLE method. We demonstrate that LASSLE has
inherited low bias for non-zero estimates and high specificity for zero-estimates from
LSE and the LASSO separately. As a result, the proposed two-step method has higher
specificity and significantly lower mean-squared error (MSE) in the simulation study.
At this stage, the full theoretical justification is being developed but the numerical
experiments are encouraging.

A natural question to ask is whether or not the LASSO method is appropriate for
fitting VAR models to brain signals. The answer lies in whether or not brain signals
such as LFPs and EEGs indeed exhibit sparse connectivity structure. Due to volume
conduction for EEGs, it is not likely that the connectivity structure between channels
is sparse. However, though LASSO aims to shrink many of the VAR coefficients to
zero but this does not necessarily lead to a sparse connectivity structure. Keep in mind
that a pair of channels are functionally disconnected only if all of the its corresponding
VAR coefficients at all lags are estimated to be zero. Thus, imposing sparsity on the
VAR coefficient matrices helps to weed out the less important parameters in the VAR
model but does not oversimplify the connectivity structure.

The remainder of this paper is arranged as follows: In Sect. 2, we present the pro-
posed hybrid LASSLE (LASSO+LSE) method followed by finite sample simulation
studies in Sect. 3 and analysis of LFP signals in Sect. 4 and conclusion in Sect. 5.

2 A Proposed Two-Step LASSO+LSE Procedure for Fitting a VAR
Model

First, we note that the VAR(d) model can be alternatively written in a form
⎡
⎢⎣

(XT )′
...

(Xd+1)
′

⎤
⎥⎦

︸ ︷︷ ︸
Y

=
⎡
⎢⎣

(XT−1)
′ · · · (XT−d)

′
...

. . .
...

(Xd)
′ · · · (X1)

′

⎤
⎥⎦

︸ ︷︷ ︸
X

⎡
⎢⎣

(�1)
′

...

(�d)
′

⎤
⎥⎦

︸ ︷︷ ︸
B

+
⎡
⎢⎣

(εT )′
...

(εd+1)
′

⎤
⎥⎦

︸ ︷︷ ︸
E

. (2.1)

Next, denote Y = [y1, y2, . . . , yP ], B = [b1, b2, . . . , bP ], E = [e1, e2, . . . , eP ].
Denote the kth column vector of the matrices Y , B and E (k = 1, 2, . . . , P) to be yk ,
bk , ek . Then we have

yk︸︷︷︸
m×1

= X bk︸︷︷︸
q×1

+ ek︸︷︷︸
m×1

, ek
indep∼ Nm(

−→
0 , σkk Im) (2.2)

where m = T − d, q = P × d, and σkk is the kth diagonal element of the covariance
matrix �. Note that Eq. (2.1) is finally decomposed into many sub-linear regression
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problems of estimating {bk}Pk=1 in a parallel manner and all the entries of connectivity
matrices are included in {bk}Pk=1.

2.1 Least Squares Estimation (LSE)

To fit a linear regression model, the most common approach is via least squares esti-
mation so that the least squares estimator b̂k satisfies

b̂k = argmin
bk∈Rq

‖yk − Xbk‖2 (2.3)

which gives the unbiased estimator b̂k = (X′
X)−1

X
′yk . Some papers [11] argue that

in high-dimensional case the number of parameters q can be larger than the number of
observations m, and thus, this method has limitations due to the non-singular matrix
X

′
X. However, we do notworry about thiswhen analyzing the LFP data since normally

we have replicated measurements from multiple epochs. The biggest problem here
is that LSE has poor specificity for coefficients with true value of zero. It always
produces estimates that are very close to zero rather than exactly zero, which reflects
non-connectivity between channels. Indeed when LFP channels are not effectively
connected with each other, then an excess non-zero estimate could lead to incorrect
characterizations of connectivity through partial directed coherence. Moreover, even a
trivial amount of bias for one coefficient, when added across thousands of coefficients,
can produce large mean-squared error (as demonstrated in the simulation study).

2.2 LASSO Family Estimation

In order to overcome the problem of non-specificity by the LSE method, recent atten-
tion has been focused on the family of penalized regression models as viable solutions
to this problem. One of the well-known methods of this family is LASSO regres-
sion (with L1 penalty term). The estimates given by LASSO are the solution to the
minimization of the criterion

b̃k = argmin
bk∈Rq

‖yk − Xbk‖2 + λ‖bk‖1. (2.4)

The penalty term will force a lot of excess non-zero estimates to exact zero, which
provides good estimate for the sparsity of the VAR coefficient matrices {��}d�=1 and
could consequently greatly simplify the calculation of connectivity measures (e.g.,
PDC) by focusing only on the more important coefficients. In the implementation of
the algorithms for LASSO,we take advantage of the results demonstrated by Friedman
et al. [10] where estimation of generalized linear models with convex penalties can be
handled by cyclical coordinate descent and computed along a regularization path. The
price of LASSO is that the non-zero estimates are biased of true values which leads
to incorrect estimates of the strength of connectivity between channels (PDC).
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2.3 LASSLE: Proposed Two-Step Estimation Method

Motivated by both the advantages and limitation of each of the previous approaches,
we propose a two-step procedure to estimate VAR model parameters. Our method
consists of these two steps:

Step 1. Apply LASSO to identify entries in {��}d�=1 whose estimates are not set to
0.

Ŝk = { j ∈ {1, . . . , q} : b̂ j
k �= 0}. (2.5)

Step 2. Fit LSEwith the constraint that “zero” entries estimates from Step 1 are fixed
to 0

b̃k L AS = argmin
bk :b j

k=0, j∈Ŝck
‖yk − Xbk‖22. (2.6)

LASSLE Algorithm
1: procedure Two- step Estimation
2: Step 1:
3: Generate a sequence of (d, λ) and randomly divide data to K folds
4: For a possible choice of (d, λ), leave one fold as test data at each time
5: Train 2.2 with LASSO method on other folds and compute {�̂�}d�=1 for {��}d�=1
6: Based on {�̂�}d�=1, calculate prediction error on test set and finally take average
7: Select (d, λ) with the lowest average prediction error
8: Obtain estimate {̂bk }Pk=1 for {bk }Pk=1 in Equation (2.2) of lag d using LASSO method with λ

9: Step 2:

10: if b̂ j
k = 0 then

11: Set b j
k = 0.

12: if b̂ j
k �= 0 then

13: Keep b j
k .

14: Obtain estimate {b̃k L AS}Pk=1 for {bk }Pk=1 in Equation (2.2) with LSE under above constriction

15: Obtain estimate {�̃�L AS}d
�=1 for {��}d�=1 by arranging {b̃k L AS}Pk=1

To obtain the optimal tuning parameter λ, we employ a K -fold cross-validation test
in Step 1. A sequence of candidates of λ will be pre-specified and the optimal value
is selected such that the average of prediction error on test data is minimized.

2.4 Theoretical Consideration

For linear regression, under Irrepresentable Condition1, {̂bk}Pk=1 have sign consistency
assured by LASSO estimator [28], which means for sufficient large sample size T −d

1 Assume bk = (b1k , . . . , b
J
k , bJ+1

k , . . . , bqk )T , where b j
k �= 0 for j = 1, . . . , J and b j

k = 0 for j =
J +1, . . . , q. Let b(1)

k = (b1k , . . . , b
J
k )T and b(2)

k = (bJ+1
k , . . . , bqk )T . Denote Grammatrix� = 1

nX
′
X =(

�11 �12
�21 �22

)
, then Irrepresentable Condition is satisfied if there exists a positive constant vector η, such

that |�21(�11)
−1 sgn(b(1)

k )| ≤ 1 − η.
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P(sgn(̂bk) = sgn(bk)) → 1 (2.7)

where sgn(bk) is the sign function with value of 1, 0 or − 1 corresponding to bk > 0,
bk = 0 or bk < 0, respectively. Therefore, P(Ŝk �= Sk) → 0, which implies high
specificity of true zero VAR coefficients. Then our inaccurate non-zero estimate will
be updated in Step 2. Since we put a constraint for LSE in Step 2, the computing is
much simplified compared with merely LSE. Moreover, the bias and mean-squared
error of LASSLE estimator will be bounded [18]

||E(b̃k L AS) − bk ||22 ≤ 2P(Ŝk �= Sk)

{
O

(
1

m

)
+ ||bk ||22 + τσkk

}
(2.8)

E ||b̃k L AS − bk ||22 ≤ 2
σkk

m
tr(�−1

11 ) +
√
P(Ŝk �= Sk){O

(
1

m

)
+ ||bk ||22 + τσkk

(2.9)

Thus, our non-zero estimates are almost unbiased, which is significantly improved
fromLASSO. Final estimates given byLASSLE in simulation study have substantially
lower general mean-squared error. Thus, our approach is able to both indicate the most
important effective connectivity and give a more precise estimate of the strength of
connectivity.

2.5 Measure of Dependence

In this section, we enumerate the different measures of dependence between com-
ponents of a multivariate time series (or between different channels) using the VAR
model. First, a P-channel time series, denoted {Xt = (X1

t , . . . ,X
P
t )′, t = 1, 2, . . .},

is weakly stationary if the following are satisfied:

(a) E(Xt ) is constant over all time t , and
(b) the autocovariance function matrix

cov(Xt , Xt+h) = �(h) =

⎛
⎜⎜⎜⎝

γ11(h) γ12(h) . . . γ1P (h)

γ21(h) γ22(h) . . . γ2P (h)
...

...
. . .

...

γP1(h) γP2(h) . . . γPP (h)

⎞
⎟⎟⎟⎠

depends only on the lag h,whereγuv(h) = cov(Xu
t , X

v
t+h) for all pairs of channels

u, v = 1, . . . , P .

Moreover, if the sequence of auto- and cross-covariance between any pair of channels
u and v is absolutely summable, i.e.,

∑∞
h=−∞ |γuv(h)| < ∞, then we define the

spectral density matrix of {Xt } to be

f (ω) =
∞∑

h=−∞
�(h)e−2π iωh, −1/2 ≤ ω ≤ 1/2. (2.10)
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The spectral matrix has dimension P × P whose diagonal elements fuu(ω) are the
auto-spectra of the channels at frequency ω and the off-diagonal elements fuv(ω) are
the cross-spectra of channels u and v at frequency ω.

The first dependency measure that we will consider is coherency. Coherency
between the uth and vth channels at frequency ω, is defined as

ρuv(ω) = fuv(ω)√
fuu(ω)

√
fvv(ω)

. (2.11)

One can interpret coherency as the cross-correlation between the ω-oscillatory com-
ponent in channel u and the ω-oscillatory component in channel v [20].

The second dependency measure is coherence. Coherence between the uth and vth
channels at frequency ω is defined as

ρ2
uv(ω) = | fuv(ω)|2

fuu(ω) fvv(ω)
. (2.12)

When ρ2
uv(ω) is close to 1 then both channels u and v share a common ω-oscillatory

activity. Moreover, when the cross-correlation between the u and v channels is 0
at all time lags, then the coherency (and coherence) between these channels at all
frequencies is 0. A large coherence value between channels u and v could be due
to direct connectivity between these two channels or could be indirectly due to the
intervening effect of other channel(s). Tomeasure the strength of connectivity between
a pair of channels—with the effect of all intervening channels removed—we shall use
partial coherence.

The third dependency measure is partial coherence. Define the matrix g(ω) =
f −1(ω) and denote the diagonal elements as gpp(ω). Let h(ω) be a diagonal matrix

whose elements are g−1/2
pp (ω). Define the matrix C(ω) to be

C(ω) = −g(ω)h(ω)g(ω). (2.13)

Then, the partial coherence between the uth and vth channels is the modulus squared
of the (u, v)th element of C(ω) [7,8]

ζ 2
uv(ω) = |Cuv(ω)|2. (2.14)

We now present the fourth dependency measure which is partial directed coherence
developed in Baccalá and Sameshima [4] and refined in Baccalá and Sameshima [5].
Consider a VAR(d) model given by Eq. (1.1), define

A(ω) = I −
d∑

�=1

��exp(−i2πω�/�) (2.15)

be the transform of sequence {��}d�=1 at frequency ω, where � is the sampling fre-
quency. The partial directed coherence from channel v to channel u at frequency ω is
defined as
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π2
uv(ω) = |Auv(ω)|2∑P

m=1 |Amv(ω)|2 (2.16)

which measures the direct influence from channel v to channel u conditional on all
the outflow from channel v. PDC gives an indication on the extent to which present
frequency-specific oscillatory activity from a sender channel explains future oscilla-
tory activity in a specific receiver channel relative to all channels in the network.

2.6 Model Selection

To determine the best order d̂ of VAR, we first use least squares estimation to obtain

{�̂�}d j
�=1 for each candidate order in the set {d j }Jj=1. We search among a class of

reasonable temporal lag orders. From our analysis of LFPs where there are usually
less than 4 peaks in the spectrum, it would be reasonable to use an upper bound of 12
as the temporal lag order. Then we calculate the sum of squared errors

SSE(d j ) =
T∑

t=d j+1

⎛
⎝Xt −

d j∑
�=1

�̂�Xt−�

⎞
⎠

⎛
⎝Xt −

d j∑
�=1

�̂�Xt−�

⎞
⎠

′
. (2.17)

Consequently, the conditional MLE of the error covariance matrix � for a candidate
order d j is

�̂(d j ) = SSE(d j )/(T − d j ) (2.18)

which is analogous to univariate regression case. To choose the optimal lag, we com-
pute three information criteria—the Akaike Information criterion (AIC), Bayesian
Information criterion (BIC), and Hannan-Quinn information criterion (HQC), respec-
tively, for each candidate order d j :

AIC(d j ) = log |�̂(d j )| + 2/T (P2d j ) (2.19)

BIC(d j ) = log |�̂(d j )| + log T/T (P2d j ) (2.20)

HQC(d j ) = log |�̂(d j )| + 2 log log T/T (P2d j ). (2.21)

The optimal order for each criterion, denoted d̂ is the minimizer of the cost functions
and thus gives the optimal balance between fit (as measured by SSE) and model
complexity (as expressedby the penalty terms). It has beennoted that d̂ B IC ≤ d̂ HQC ≤
d̂ AIC when T ≥ 16 [13]. In the analysis of LFPs, the difference between d̂ B IC and
d̂ AIC is at most 1, and therefore, we choose d̂ AIC to capture more temporal correlation
by fitting a VAR of slightly higher lag order.

2.7 Bootstrap-Based Inference

To conduct inference on the VAR parameters, a general idea is to derive the asymptotic
property of the estimated VAR coefficient matrices. However, this is not trivial and is
still under investigation given the high dimensionality of the VAR parameter space.
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An alternative is to develop a bootstrap-based inference, which has been used in
time series [15,17,21–23]. After obtaining the estimates of the VAR(d) coefficient
matrices, {�̃�}d�=1, we use these estimates and corresponding residuals to generate
new bootstrapped trials. Denote

Rt = Xt − �̃1Xt−1 − · · · − �̃dXt−d , t = d + 1, . . . , T (2.22)

by residual at time t . Then, to generate a bootstrapped trial {X(b)
t }Tt=1, we shall use the

following bootstrap algorithm. Define the bootstrapped residuals to be {R(b)
t }Tt=d+1,

which are selected with replacement from {Rt }Tt=d+1. Let X
(b)
t = Xt when t =

1, . . . , d, then X(b)
t = ∑d

�=1 �̃�X
(b)
t−� + R(b)

t are bootstrapped data at time t when
t = d + 1, . . . , T .

Bootstrap Algorithm
1: For b = 1, . . . , B
2: Step 1:

3: Let X(b)
t = Xt for t = 1, 2, . . . , d

4: Step 2:

5: Randomly sample bootstrapped residuals {R(b)
t }Tt=d+1 from {Rt }Tt=d+1 with replacement

6: Step 3:

7: Let X(b)
t = ∑d

�=1 �̃�X
(b)
t−�

+ R(b)
t be bootstrapped data at time t when t = d + 1, . . . , T

Given the bth bootstrap time series {X(b)
t }Tt=1, we compute the VAR coefficient

estimates which we denote by {�̃(b)
� }d�=1 using the LASSLEmethod and then compute

partial directed coherence estimate.We repeat this procedure a sufficient large number
of times, then we can find the empirical distribution and obtain the 95% bootstrap
confidence interval of both VAR parameters and PDCs.

3 Simulation Study

3.1 Simulation Design

To compare the performance of the proposed LASSLE approach with the classical
methods (i.e., LSEonly andLASSOonly),we conducted a simulation study ofVAR(d)
model for two different brain network types. The first is “Cluster,” which is a type of
network that has high level local and global connectivity efficiency. In Fig. 3, channels
(red nodes) are located in four brain regions, while the edge between two red nodes
indicates connectivity at channel level. Auto-connectivity inside each region makes
channels from the same region connect like a cluster, and cross-connectivity between
brain regions determines whether these clusters are connected with each other. For
example, Cluster 2 is independent from other regions, but Cluster 1 and Cluster 4 are
connected due to the cross-connectivity at region level.
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Cluster 1

Cluster 4

Cluster 2 Cluster 3

Fig. 3 50 brain channels of “Cluster” type

In the second type “Scale-free,” shown in Fig. 4, there is no significant auto-
connectivity or cross-connectivity at the region level, but all the brain channels are
connected within the network. Most of the channels have several connections with
other channels, with the exception that a few channels are heavily connected. The idea
is that these channels play a central role in the organization of entire brain network,
as they are mostly responsible for the connectivity efficiency.

For both network types, we use Eq. (1.1) to generate time series data sets. The VAR
matrix �1 of setting {P = 50, d = 1} is visualized in Figs. 5a and 6a. Each small
square represents the non-zero entry of �1 and different colors indicate different
values according to the color bar. The blank part of coefficient matrix is the zero
entries. In addition, εt follows a Gaussian distribution and the covariance matrix is
not necessary to be diagonal. We run N = 1000 simulations for each VAR setting,
respectively, and the time series data of each channel contains T = 10, 000 time
points. Then we apply LSE, LASSO, and our LASSLE method to estimate coefficient
matrices, and compare their results with two important criteria. The first one evaluates
how successful the estimate identifies the specific entries with true value of zero, as
shown by the visualization of absolute difference between true coefficient matrix and
estimated one. The second criterion is their mean-squared error, which is defined as

MSE =
∑

n,�,i, j

(
�

i j
� − �̂

i j
�

)2

N
, (3.1)
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Fig. 4 50 brain channels of “Scale-free” type

where {�i j
� }d�=1, {�̂i j

� }d�=1 represent entries of {��}dl=1 and {�̂�}d�=1, respectively.
Lower MSE indicates better centering at true connectivity matrix.

3.2 Simulation Results

Due to the display limit of high-dimensional matrix, we only demonstrate visualized
results of VAR setting {P = 50, d = 1}.

3.2.1 Results from the “Cluster” Setting

In this setting, 50 channels represent measurements in four brain regions and only
region 1 and region 4 have cross-connectivity. In the coefficient matrix, all non-zero
entries are first randomly assigned either 0.1 or− 0.1, then 0.5 is added to all diagonal
entries (shown in Fig. 5a). Figure 5b–d yields the absolute difference between true
connectivity matrix and estimated one by LSE, LASSO, and LASSLE method. The
color of small squares ranging from white to red indicates the value of absolute dif-
ference of each entry. The blank part of the matrix implies that the estimate has given
correct zero-estimate for those true zero entries so that there is no need to distinguish
the difference with color. Table 1 demonstrates the MSE results of all three methods
under different VAR parameter settings {P, d}.
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Fig. 5 Comparison of specificity of true zero on “Cluster” type data with Gaussian noise. a demonstrates
the true VAR(1) coefficient matrix with P = 50. b–d yield the absolute difference between true matrix and
estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

Table 1 Comparison of MSE
between three methods on
“Cluster” type data

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 8 93 4*

500 10 5 58 326 36*

1000 10 10 134 412 82*

2500 50 1 176 464 24*

5000 50 2 457 739 93*

10,000 100 1 697 1016 65*

* Lowest MSE among three
methods under each VAR
parameter setting

3.2.2 Results from the “Scale-Free” Setting

To generate “Scale-free” type data, we assign 0.5 to all diagonal entries of connectivity
matrix, and 0.1 or− 0.1 randomly to other non-diagonal entries with small probability
(seen in Fig. 6a). Fig. 6b–d give the visualized estimate results given by LSE, LASSO,
and LASSLE method separately. MSE comparison is found in Table 2.
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Fig. 6 Comparison of specificity of true zero on “Scale-free” type data with Gaussian noise. a demonstrates
the true VAR(1) coefficient matrix with P = 50. b–d yield the absolute difference between true matrix and
estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

Table 2 Comparison of MSE
between three methods on
“Scale-free” type data

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7 86 2*

500 10 5 53 158 16*

1000 10 10 130 472 72*

2500 50 1 191 432 9*

5000 50 2 480 877 37*

10,000 100 1 762 921 19*

* Lowest MSE among three
methods under each VAR
parameter setting

3.2.3 Discussion

From visualized results, we can find that LSE is unable to give specificity for true zero
coefficients, since its estimates do not contain blank squares. However, its estimate
has general lower bias across all the entries, which is implied by the light color of
absolute difference. LASSO is able to identify most true zero entries, but darker color
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of rectangles indicates that this method has high bias for the estimate. Our method,
constrained with LASSO in Step 1, has inherited the specificity of true zero values
from LASSO, and consequently can capture true zero values as well as LASSO. Thus
in the sense of specificity of true zero, the comparison result is as follows: LASSLE
= LASSO >> LSE.

For another important criteria MSE, the proposed LASSLE approach has substan-
tial advantage over LSE and LASSO. In 50-channel “Cluster” setting, the MSE given
by LSE and LASSO are approximately 5 times and 10 times the MSE provided by our
method, respectively. Also, in 50-channel “Scale-free” settlement, LSE and LASSO
provide at least 10 times and 20 times higher MSE compared with LASSLE, respec-
tively.With the increase of dimensions, the advantage is also increasing geometrically.
Therefore, LASSLE performs better with respect to the MSE criterion compared to
both LSE and LASSO.

3.3 Bootstrap-Based Inference

For each VAR setting and its simulation, we follow the bootstrap algorithm in Sect. 3.3
to generate 1000bootstrapped trials and re-estimate theVARparameterswithLASSLE
method. We (1) investigated whether the 95% bootstrap confidence interval given by
the empirical distribution of each VAR parameter captured the true value and (2)
compared the center of the bootstrap distribution to the true value of the quantities of
interest (VAR parameters and true PDC values). To answer (1), we plot the empirical
distribution of eachVARparameter and compare its 95% empirical confidence interval
with the true value. To compare (2), we obtain the median of bootstrapped estimates
for each entry, then use these medians to form a matrix and compare its absolute
difference with the true connectivity matrix.

Figures 7 and 8 demonstrate examples of empirical distribution derived from 1000
bootstrap estimates. The red-dashed line indicates the true value of these example
coefficients. The blue curve is the smoothed estimated density curve of each empirical
distribution. For some coefficients, e.g., �20

1 ,�25
15 in Fig. 7 and �40

15,�
25
30 in Fig. 8, we

are not able to provide a density curve as the empirical distribution is a point-mass
density at x = 0, in otherwords, all 1000bootstrappedLASSLEestimates of these zero
coefficients are exactly zero. We can conclude that 95% confidence interval or set of
the empirical distribution can capture the true parameter value in the simulation study.

Figure 9a, b demonstrates the median of 1000 bootstrapped LASSLE estimates
of “Cluster” and “Scale-free” type data under previous setting {P = 50, d = 1},
respectively. Figure 9c, d yields their absolute difference with the true connectivity
matrix. Given that the color of most non-zero median estimates of LASSLE is very
light, we can conclude that the empirical distributions generated by bootstrap are well
centered around the true coefficient values.

3.4 Robustness of LASSLE Method

Previous simulation study is conducted under the assumption that εt , the noise of
VAR(d) at time t , follows a multivariate Gaussian distribution. In addition to Gaus-
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Fig. 7 Sample empirical distribution of “Cluster” type bootstrapped estimates. Red-dashed line indicates
the true value of these example coefficients. Blue curve is the smoothed estimated density curve of each

empirical distribution. All 1000 bootstrap estimates of�1,20
1 ,�

15,25
1 , �

15,40
1 ,�

30,25
1 , and�

45,30
1 are zero,

so we are not able to plot the point-mass density for these coefficients

sian noise, we are interested to investigate whether the LASSLE method has better
specificity, lower bias, lower variance (and thus lowerMSE) than the LSE and LASSO
methods for other noise distributions, e.g., student’s t-noise (with low degree of free-
dom) and shifted χ2 noise. To explore this, we generated time series datasets using
Eq. (1.1) under different VAR settings {P, d} with P independent t-noise and P inde-
pendent χ2 noise, respectively. Then we apply all three methods to estimate the VAR
coefficient matrices under each setting and compare their performance in terms of
both the specificity of true zero and the general mean-squared error.

3.4.1 Results from Student’s t-Noise

We use P independent
√
0.06 ∗ t (5), of which mean equals to 0 and variance equals

to 0.1, to generate the student’s t-noise at time t . Figures 10 and 11 demonstrate
the performance comparison of three methods on “Cluster” type and “Scale-free”
type data regarding their specificity of true zero under setting {P = 50, d = 1}.
The visualization results imply that LASSLE can capture the true zero coefficient
substantially better thanLSE. In addition,LASSLEhasmuch lower absolute difference
on non-zero coefficients compared to LASSO.
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Fig. 8 Sample empirical distribution of “Scale-free” type bootstrapped estimates. Red-dashed line indicates
the true value of these example coefficients. Blue curve is the smoothed estimated density curve of each

empirical distribution. All 1000 bootstrap estimates of �
15,40
1 ,�

30,25
1 , �

30,35
1 , and �

45,10
1 are zero, so we

are not able to plot the point-mass density for these coefficients

Tables 3 and 4 list the MSE results of all three methods on both “Cluster” type and
“Scale-free” type data with student’s t-noise under different VAR parameter settings.
We can see that LASSLE method still has overwhelming advantage over LSE and
LASSO when the number of parameter is large enough (≥ 2500). On the other hand,
LSE has slightly lower MSE than LASSLE under low-dimensional parameter setting.

3.4.2 Results from Shifted Zero-Mean χ2 Noise

To generate P-dimensional shifted χ2 noise at time t , we employ P independent√
0.0125 ∗χ2

4 −√
0.2, with mean of 0 and variance of 0.1. Figures 12 and 13 demon-

strate the comparison results of three methods on “Cluster” type and “Scale-free” type
data in terms of their specificity of true zero under setting {P = 50, d = 1}. Based on
the visualization results, we can see that LASSLE estimate has very good specificity
of true zero coefficients regardless of χ2 noise.

Tables 5 and 6 list the MSE results of all three methods on both “Cluster” type and
“Scale-free” type data with shifted χ2 noise under different VAR parameter settings. It
implies that LASSLEmethod has significantly lowerMSE under most high dimension
parameter setting than LSE and LASSO.
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Fig. 9 Bootstrap median of 1000 bootstrapped LASSLE estimates. a, b give the median of 1000 boot-
strapped LASSLE estimates for “Cluster” type and “Scale-free” type data. c, d demonstrate the absolute
difference between the median estimated matrix and true coefficient matrix (Color figure online)

4 Application to Effective Connectivity in Multichannel LFPs

In this section, we will fit a VARmodel to LFP data recorded frommultiple electrodes
as rats perform a non-spatial sequencememory task [3] and apply the LASSLEmethod
to estimate the VAR parameters and consequently partial directed coherence. Our
objective is to examine and quantify potential connectivity (i.e., effective) among
electrodes located in hippocampal region CA1, which is clinically meaningful as this
form of sequence memory shows strong behavioral parallels in rats and humans [1],
and depends on the hippocampus for both species [6, submitted], [9], and is impaired
in normal aging [2] .

4.1 Data Description

In the experiment (shown in Fig. 14), rats were presented with repeated sequences
of five odors in a single odor port. They were trained to identify whether each
odor was presented “in sequence” (by holding their nose poke until the sig-
nal) or “out of sequence” (by withdrawing their nose poke before the signal) to
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Fig. 10 Comparison of specificity of true zero on “Cluster” type data with student’s t-noise. a demonstrates
the true VAR(1) coefficient matrix with P = 50. b–d give the absolute difference between true matrix and
estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

receive a water reward. The LFP data included here were recorded from CA1 elec-
trodes during a session in which a well-trained rat performed the task at a high
level [3].

The full dataset includes LFPs from 23 tetrodes located in the hippocampus and
n = 247 epochs, where n = 219 epochs are “in sequence” (InSeq) and n = 28
epochs are “out of sequence” (OutSeq). Each epoch is recorded roughly 1 second with
sampling frequency of 1000 Hz and thus has T = 1000 time points. We specifically
focused our analyses on LFPs from P = 12 tetrodes, a subset of electrodes that also
recorded clear single-cell spiking activity and were confirmed to be located in the
pyramidal layer of CA1 (see estimated tetrode locations in Fig. 15). In addition, LFPs
of Epoch 10 are found in Fig. 16.We observe that time series of LFPs from tetrode T13
to tetrode T23 have highly similar temporal pattern, while time series of the remaining
tetrodes are highly similar. This is because tetrodes near each other are likely to behave
more similarly than those that are far apart.

Figure 17 (left) displays the LFPs from tetrode T22 during the first 30 epochs;
the boxplots of its auto-correlation function (ACF) across all 247 epochs; and
the boxplots of the partial auto-correlation function (PACF) across all epochs. We
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Fig. 11 Comparison of specificity of true zero on “Scale-free” type data with student’s t-noise. a demon-
strates the true VAR(1) coefficient matrix with P = 50. b–d give the absolute difference between true
matrix and estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

Table 3 Comparison of MSE
for “Cluster” type data with
student’s t-noise

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7* 184 28

500 10 5 57* 603 73

1000 10 10 147* 741 216

2500 50 1 175 836 37*

5000 50 2 455 1242 98*

10,000 100 1 686 1726 88*

* Lowest MSE among three
methods under each VAR
parameter setting

observe that the boxplots of ACF fail to drop to zero even after very long lags
and there is a cyclical behavior in the pattern. Both of these could be evidence of
non-stationarity (or long-memory). These suggest pre-processing the data by tak-
ing a first-order difference. The results of LFPs after differencing are shown on the
right side of Fig. 17. Compared to the previous plots, the ACF boxplots eventually
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Table 4 Comparison of MSE
for “Scale-free” type data with
student’s t-noise

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 6* 134 11

500 10 5 44 278 12*

1000 10 10 124* 728 217

2500 50 1 181 778 50*

5000 50 2 450 1056 24*

10,000 100 1 747 1641 160*

* Lowest MSE among three
methods under each VAR
parameter setting
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Fig. 12 Comparison of specificity of true zero on “Cluster” type data with shifted zero-mean χ2 noise. a
demonstrates the true VAR(1) coefficient matrix with P = 50. b–d give the absolute difference between
true matrix and estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

decay to zero with smaller interquartile range, which means that the pre-processed
data look more stationary and the correlation drops to zero faster than the orig-
inal LFPs. Therefore, we will fit the VAR model to the first-order differenced
LFPs.
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Fig. 13 Comparison of specificity of true zero on “Scale-free” type data with shifted zero-mean χ2 noise.
a demonstrates the true VAR(1) coefficient matrix with P = 50. b–d give the absolute difference between
true matrix and estimated matrix by LSE, LASSO, and LASSLE method, respectively (Color figure online)

Table 5 Comparison of MSE
for “Cluster” type data with
shifted zero-mean χ2 noise

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 7* 159 14

500 10 5 56 465 41*

1000 10 10 139 561 136*

2500 50 1 182 666 31*

5000 50 2 453 1039 75*

10,000 100 1 696 1572 87*

* Lowest MSE among three
methods under each VAR
parameter setting

4.2 Preliminary Analysis of a Single Epoch

We first demonstrate fitting the VAR model to a single epoch (Epoch 10 in this exam-
ple). To select the best lag order d̂, we fit a VAR(d j ) model with candidate order
d j ∈ {1, 2, . . . , 12} and use LSE to estimate the coefficient matrices. Then we apply
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Table 6 Comparison of MSE
for “Scale-free” type data with
shifted zero-mean χ2 noise

VAR parameter setting MSE ×10−3

Number P d LSE LASSO LASSLE

100 10 1 8 143 3*

500 10 5 55 224 16*

1000 10 10 129* 654 153

2500 50 1 194 663 22*

5000 50 2 451 967 23*

10,000 100 1 747 1291 40*

* Lowest MSE among three
methods under each VAR
parameter setting

Fig. 14 A non-spatial sequence memory experiment in rats. Rats were presented with repeated sequences
of five odors (A, B, C, D, and E) in a single odor port. Each odor presentation was initiated by a nose poke
and rats were required to correctly identify the odor as either InSeq (ABCDE) by holding their nose poke
until the signal or OutSeq (e.g., ABDDE) by withdrawing their nose poke before the signal

Eqs. (2.17), (2.18), and (2.19) to compute AIC for each candidate order d j . For epoch
10, the best order (or the minimizer of AIC) was d̂ = 3. Consequently, there were 3
coefficient matrices (each of dimension 12 × 12) to estimate.

Figure 18 shows the LASSLE estimates of �1, �2, and �3 for Epoch 10. Blanks
are assigned to entries whose value is zero, so non-dependence between tetrodes is
easy to tell. For entries whose value is not zero, we assign them with colors of red
for positive value and blue for negative value, and the strength of dependence is
implied by the color-key. As we can see, most diagonal entries of �1 are either red or
orange, which implies that signals have strong positive auto-dependence. In addition,
upper off-diagonal entries in column 9 to 12 of �1 are mostly blue, which could
be evidence that signal of tetrode T7, T8, T9, and T2 at time t − 1 has significant
negative dependence with signals from other tetrodes location at time t . Compared
to �1, more than half entries in �2 are blank, suggesting that there is no auto- and
cross-dependence between those tetrodes at time t − 2 and at time t . Column 1 to 8
in �2 are light blue, which implies weak negative dependence between signals from

123



Stat Biosci

Fig. 15 Estimated location within the hippocampus (dorsal CA1 region) of subset of 12 tetrodes included
in the analyses (Color figure online)
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LFP recordings from 12 tetrodes during Epoch 10
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Fig. 16 LFPs from 12 tetrodes studied in this paper during Epoch 10. These LFPs have temporal patterns
that can be separated into two clusters. The first consists of T7, T8, T9, and T2 which are all on the posterior
(back) portion of the dorsal CA1 region. The second consists of the remaining channels which are all on
the anterior portion (front)
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Fig. 17 Top: The LFPs time series plots of the first 30 epochs at tetrode T22 before (left) and after (right)
processing. Middle: The boxplots of auto-correlation function (ACF) from tetrode T22 before (left) and
after (right) processing across all epochs. Bottom: The boxplots of partial auto-correlation function (PACF)
from tetrode T22 before (left) and after (right) processing across all epochs (Color figure online)

tetrode T20, T19,…, T15 at time t −2 and signals from these tetrodes location at time
t . Also, we believe that there is positive dependence between signals from tetrode
T7, T9, T2 at time t − 2 and signals from tetrode T20, T19, …, T13 at time t as the
color of column 9, 11, and 12 in �2 is orange. However, most entries of �3 are blank
and limited non-zero estimates are close to zero, which implies that the dependence
between LFPs at time t − 3 and time t is very weak.

Next we applied Eqs. (2.15) and (2.16) to the LASSLE estimates to calculate partial
directed coherence. PDCwas computed at the following frequency bands in the study:
δ band (0–4 Hz), θ band (4–8 Hz), α band (8–12 Hz), β band (12–32 Hz), and γ band
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(32–50 Hz), which are standard in brain signals analysis. To estimate PDC at specific
frequency band, we calculate the average of estimates of PDC over all singleton
frequencies in that band. Figure 19 demonstrates the estimated PDC results of these
frequency bands in Epoch 10. Since there is only slight change on the estimated PDC
across different frequency bands, we use the results of the γ band (shown in Table 7)
as representative to explain the PDC. For tetrodes T16, T14, T13, T15, T7, and T9,
over 75% of their information can be explained by their own past while most of their
information flowing to other tetrodes are very close to 0. More specifically, tetrode
T14 has 2.4% information that flows to tetrode T13, and 6.1% information of tetrode
T16 flows to tetrode T14. This implies that they tend to have communication with
specific tetrodes instead of the entirety. Unlike these tetrodes, tetrodes T20, T19, T22,
T23, T8, and T2 have significant amount of information flowing to other tetrodes.
For example, the proportion of current tetrode T8 that is explained by its own past is
only about 30.0%. This could be evidence that these tetrodes play an important role
of passing information to other tetrodes while the rat was engaged in a non-spatial
memory task. Estimated PDCs from tetrodes T20, T19, T22, T16, T23, T14, T13, T15
(sender) to tetrodes T7, T8, T9, T2 (receiver) are almost none (the blank on the bottom
left of PDC), which suggest that previous oscillatory activity at the γ band of first 8
tetrodes can hardly explain future oscillatory activity at the γ band of last 4 tetrodes
as they are far apart in spatial distance.

4.3 Change of Brain Connectivity Across Epochs

We repeat the same procedure for all epochs and select the best VAR order separately.
Figure 20 demonstrates the AIC curves of the first 15 epochs, from which we can see
some epochs reach the lowest AIC at d̂ = 3 and some of them are d̂ = 4. Table 8
shows the distribution of d̂ across all 247 epochs. We fit VAR(d̂) to each epoch and
estimate the corresponding coefficient matrices by LASSLEmethod. Figure 21 shows
the boxplots of ACF and PACF of residuals fitted from tetrode T22 across all 247
epochs, which is strong evidence that the residuals from tetrode T22 are white noise.
The same phenomenon is observed for residuals fitted from other tetrodes.

After computing all the PDCs, we obtain the 95% confidence interval of PDC by
summarizing from the empirical distribution if we assume all epochs carry the same
connectivity information. However, this assumption may not be true and we are more
interested in the variation of PDCs across all epochs, which can help us understand
the dynamics of rat’s brain connectivity in this memory experiment. To visualize the
evolution, we develop Figs. 22 and 23, where PDC matrix (12 × 12) is converted to
a column vector of 12 × 12 = 144 elements at each epoch and x-axis indicates the
index of epochs. We can clearly see that estimated PDCs at the γ band are quite stable
on some tetrode pairs, e.g., tetrode T13 to tetrode T13 (always red color), while PDC
estimates of other tetrode pairs are varying with epochs.

To compare the variation of estimated PDCs at the γ band between InSeq epochs
and OutSeq epochs, the Kolmogorov–Smirnov (KS) test is used [16]. The null hypoth-
esis of KS test is that the empirical distribution of PDCs from InSeq epochs and that
of OutSeq epochs are identical. Here, we use permutation to obtain the empirical
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Table 7 Estimated PDC value at the γ band in Epoch 10. The estimated PDC from tetrode T16 to tetrode
T22 is 0.010. The estimated PDC from tetrode T22 to T16 is 0.200

Tetrode (receiver) Tetrode (sender)

T20 T19 T22 T16 T23 T14 T13 T15 T7 T8 T9 T2

T20 0.548 0.019 0.005 0.000 0.041 0.000 0.002 0.000 0.018 0.060 0.004 0.021

T19 0.126 0.734 0.054 0.005 0.003 0.000 0.001 0.000 0.011 0.048 0.002 0.062

T22 0.026 0.026 0.593 0.010 0.091 0.000 0.001 0.003 0.017 0.078 0.006 0.019

T16 0.000 0.147 0.200 0.909 0.010 0.000 0.000 0.000 0.073 0.041 0.009 0.252

T23 0.056 0.000 0.085 0.000 0.513 0.000 0.007 0.000 0.082 0.139 0.007 0.058

T14 0.010 0.007 0.043 0.061 0.068 0.971 0.006 0.000 0.001 0.042 0.004 0.019

T13 0.232 0.048 0.008 0.003 0.258 0.024 0.979 0.000 0.009 0.081 0.004 0.029

T15 0.000 0.019 0.000 0.000 0.016 0.005 0.000 0.962 0.002 0.014 0.004 0.000

T7 0.000 0.000 0.000 0.006 0.000 0.000 0.001 0.010 0.786 0.133 0.002 0.002

T8 0.001 0.000 0.000 0.006 0.000 0.000 0.001 0.025 0.001 0.300 0.012 0.002

T9 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.063 0.946 0.000

T2 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.536

2 4 6 8 10 12

−
93

−
92

−
91

−
90

Lag

A
IC

Fig. 20 AIC of fitted VAR on first 15 epochs, lag order range: 1,2,…,12 (Color figure online)

Table 8 Distribution of selected
VAR lag order

Selected lag order 2 3 4 5

Number of epochs 64 158 23 2

Proportion (%) 25.9 64.0 9.3 0.8

distribution of KS test statistics. Since it is necessary to preserve the inherent corre-
lation across different epochs, the entire 247 epochs were partitioned into 50 groups
where 5 consecutive epochs are within the same group (for the last group, we repli-
cate Epoch 246 and Epoch 247 to make 5 epochs). This idea is inspired by the block
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Fig. 21 The boxplots of auto-correlation function (ACF) of residuals fitted from tetrode T22 across all
epochs (left). The boxplots of partial auto-correlation function (PACF) of residuals fitted from tetrode T22
across all epochs (right) (Color figure online)

Fig. 22 PDC on γ band across all epochs. X-axis is the index of epochs. At each epoch, PDC matrix
(12 × 12) is converted to a column vector of 12 × 12 = 144 elements, where every 12 elements are the
PDC values of one tetrode to all 12 tetrodes (Color figure online)

bootstrap procedure for time series. Then, we randomly selected 5 groups (containing
25 epochs) from 50 groups as experimental OutSeq epochs, using the rest as exper-
imental InSeq epochs, and compute the KS-statistic for this new Inseq and OutSeq
grouping. This procedure is repeated 10,000 times to obtain the empirical distribution
of KS-statistics. Finally, the proportion of permuted KS-statistics with larger values
than the real KS-statistic is used as the p value.

Figures 24 and 25 demonstrate the empirical distributions of estimated PDCs for all
tetrodes given by Inseq epochs (blue curve) and Outseq epochs (red curve). Based on
the p values of KS test, there is strong evidence showing that the variation of auto-PDC
of tetrodeT19, T22, T23, andT13 is different between Inseq epochs andOutseq epochs
(Fig. 24). For these tetrodes, the proportion of their current oscillatory activity that can
be explained by their own past activity is influenced by whether odors are presented
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Fig. 23 Illustration of Fig. 22. Every 12 rows in Fig. 22 indicate the PDCs from one tetrode to all 12 trodes
across 247 epochs. For example, the first 12 rows demonstrate the PDCs from T20 to T20, T19, …, T2 at
all epochs (Color figure online)
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Fig. 24 Density curves of auto-PDCs across all 247 epochs. Blue one is the density curve of InSeq epochs
only. Red one is the density curve of OutSeq epochs only. Kolmogorov–Smirnov test is used, where the
null hypothesis is that two empirical distributions are the same. p value is obtained from permutation and
we reject the null hypothesis when p <= 0.05 (Color figure online)
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Fig. 25 Density curves of some cross-PDCs across all 247 epochs. Blue one is the density curve of InSeq
epochs only. Red one is the density curve of OutSeq epochs only. Kolmogorov–Smirnov test is used, where
the null hypothesis is that two empirical distributions are the same. p value is obtained from permutation
and we reject the null hypothesis when p <= 0.05 (Color figure online)

in the correct or incorrect sequence position (Inseq or Outseq, respectively). However,
for the remaining tetrodes, the variation in their estimated auto-PDC is quite stable
across Inseq epochs and Outseq epochs. As shown in Fig. 25, p values also indicate
that the variation of estimated PDC from tetrode T19, T22, and T23 (sender) to some
other tetrodes (receiver) is significantly different between Inseq epochs and Outseq
epochs, which suggests that the information flowing from these tetrode locations to
others is also influenced by the Inseq/Outseq status of the presented odor.

4.4 Comparison of Three Methods on PDC Across All Epochs

We also apply traditional methods (LSE only and LASSO only) to estimate VAR
coefficients and then compute the PDC for each epoch separately. Figures 26 and 27
demonstrate the density curve of auto-PDCs and some cross-PDCs estimated by three
methods across all epochs. The red curve is given by LASSLE method; the blue one
is via LSE, and the green one is achieved by LASSO. As we can see, the red curve is
close to the blue one for most PDCs. This is because each estimated PDC is mostly
influenced by some dominant non-zero VAR coefficients, of which the estimates are
close to each other by LASSLE and LSE separately. Noted that LASSO method has
shrinked many VAR coefficients to zero and its non-zero estimates are very different
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Fig. 26 Density curves of auto-PDCs across all 247 epochs given by three methods. The red curve is
LASSLE; the blue one is LSE, and the green one is LASSO (Color figure online)

from those by LSE. Consequently the green curve is dissimilar to the blue one for
most PDCs.

5 Conclusion

In this paper, we proposed a hybrid LASSLE (LASSO+LSE) method to estimate
the coefficients of vector autoregressive models characterizing the effective and direc-
tional connectivity for multichannel brain physiological signals. This method uses
regularization to control for sparsity on the first stage and then use least squares to
improve bias and mean-squared error of the estimator on the second stage. Compared
to the separate LASSO and LSE, the advantage of our method is that it is able to both
indicate themost important effective connectivity and give amore accurate estimate of
the connectivity strength. Note that sparse VAR coefficient estimates can still capture
complex dependency structures in a multivariate time series. In addition, we employ
partial directed coherence to measure the directional connectivity between the chan-
nels. PDC is a directed frequency-specificmeasure that explains the extent towhich the
present oscillatory activity in a sender channel influences the future oscillatory activity
in a specific receiver channel relative to all possible receivers in the network. The pro-
posed modeling approach provided key insights into potential functional relationships
among simultaneously recorded sites during performance of a complex memory task.
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Fig. 27 Density curves of some cross-PDCs across all 247 epochs given by three methods. The red curve
is LASSLE; the blue one is LSE, and the green one is LASSO (Color figure online)

Specifically, this novel method was successful in revealing patterns of effective con-
nectivity across tetrode locations, by quantifying how present oscillatory activity in
each tetrode is influenced by past oscillatory activity in other tetrodes. This approach
was also successful in capturing how this effective connectivity varied across trial
epochs and trial types (Inseq or Outseq).
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