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Nonspatial Sequence Coding in CA1 Neurons
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The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental
neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can repre-
sent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains
lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-
memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each
item as “in sequence” or “out of sequence”. We report that, while the animals’ location and behavior remained constant, hippocampal
activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some
neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific
conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence
cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles,
that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscilla-
tions (20 – 40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4 –12 Hz). These findings
provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function
of the hippocampus.
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Introduction
The ability to remember temporal relationships among events or
stimuli is fundamental to perception, cognition, and adaptive
behavior across species (Mauk and Buonomano, 2004; Buhusi
and Meck, 2005; Allen and Fortin, 2013; Merchant et al., 2013).
This type of temporal organization is also an essential feature of

episodic memory, as the memory for individual events includes
information about the order in which they occurred during an
experience (Eichenbaum and Fortin, 2005; Ranganath and
Ritchey, 2012; Allen and Fortin, 2013; Eichenbaum, 2014; Dava-
chi and DuBrow, 2015). Based on its unique neural architecture,
several prominent models have proposed that a fundamental
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Significance Statement

The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain
poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a
nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors
were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The
discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neuro-
biology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the
neural mechanisms underlying memory impairments in aging and dementia.
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function of the hippocampus is to code for sequences of inputs or
events (McNaughton and Morris, 1987; Levy, 1996; Tsodyks et
al., 1996; Lisman, 1999; Howard et al., 2005, 2014; Foster and
Knierim, 2012), a view supported by considerable research show-
ing that hippocampal neurons can encode sequences of spatial
locations (Skaggs and McNaughton, 1996; Skaggs et al., 1996;
Mehta et al., 2000, 2002; Dragoi and Buzsáki, 2006; Foster and
Wilson, 2006, 2007; Karlsson and Frank, 2009; Gupta et al., 2010,
2012; Mehta, 2015). However, many of our memories share the
same location and, although it is well established that the hip-
pocampus plays a critical role in the memory for nonspatial se-
quential relationships (Agster et al., 2002; Fortin et al., 2002;
Kesner et al., 2002; Ekstrom and Bookheimer, 2007; Jenkins and
Ranganath, 2010), we have little insight into the neural mecha-
nisms supporting this capacity.

Recent recording studies have discovered patterns of hip-
pocampal activity associated with the passage of time over shorter
(Pastalkova et al., 2008; Gill et al., 2011; MacDonald et al., 2011,
2013; Naya and Suzuki, 2011) or longer timescales (Manns et al.,
2007; Mankin et al., 2012). While these findings may provide a
framework for keeping track of how much time has elapsed be-
tween events, they do not offer a clear mechanism for coding
sequential or ordinal relationships among rapidly unfolding se-
ries of events. Instead, a potential mechanism is suggested by
accumulating evidence of context-specific activity in hippocam-
pal neurons. In fact, similar to the well documented finding that
hippocampal neurons can differentially code for the same loca-
tion, depending on the trial type or trajectory performed (Frank
et al., 2000; Wood et al., 2000; Ferbinteanu and Shapiro, 2003;
Bower et al., 2005; Smith and Mizumori, 2006), we hypothesized
that hippocampal neurons can differentially code for the same
items, depending on the sequence position in which they
occurred.

To test this hypothesis, we recorded neural activity in hip-
pocampal region CA1 as rats performed a nonspatial sequence
memory task that shows strong behavioral parallels in rats and
humans (Allen et al., 2014, 2015) and depends on the hip-
pocampus in both species (Quirk et al., 2013; Boucquey et al.,
2014). More specifically, rats were presented with repeated
sequences of odors in a single odor port and were required to
make a judgment as to whether each item was presented “in
sequence” (InSeq) or “out of sequence” (OutSeq). Neural ac-
tivity was analyzed in three sessions of interest (Well-Trained,
Novel1, Novel2), which differed by the amount of training
received on the sequence and thus resulted in different levels
of sequence memory performance. We observed distinct pat-
terns of hippocampal activity, depending on whether items
were presented InSeq or OutSeq. This nonspatial sequence
coding was present at the level of individual neurons, neuronal
ensembles, and local field potentials (LFPs), and paralleled
sequence memory performance across sessions. In addition to
providing strong support for the view that sequence coding is
a fundamental function of the hippocampus, these findings
provide evidence of a novel form of context-specific activity by
which memories that share item and location information
could be disambiguated or organized based on their distinc-
tive temporal context (Howard and Kahana, 2002; Eichen-
baum, 2014; Howard et al., 2014).

Materials and Methods
Subjects. Five male Long–Evans rats, weighing �350 g at the beginning
of the experiment, served as subjects. Rats were individually housed
and maintained on a 12 h light/dark cycle. Rats had ad libitum access

to food, but access to water was limited to 2–10 min each day, depend-
ing on how much water they received as reward during behavioral
training (3– 6 ml). On weekends, rats received full access to water for
�12 h to ensure adequate overall hydration. Hydration levels were
monitored daily. All procedures were conducted in accordance with
the Institutional Animal Care and Use Committee.

Equipment and stimuli. Subjects were tested in a quiet experimental
room with automated equipment capable of repeated deliveries of
multiple distinct odors in a single odor port (Fig. 1A). The apparatus
consisted of a linear track (length, 150 cm; width, 9 cm), with walls
angled outward (30° from vertical; height, 40 cm). The odor port,
located on one end of the track, was equipped with photobeam sen-
sors to precisely detect nose entries and was connected to an odor
delivery system (Med Associates). Two water ports were used for
reward delivery: one located under the odor port, the other at the
opposite end of the track. Timing boards (Plexon) and digital input/
output devices (National Instruments) were used to measure re-
sponse times and control the hardware. All aspects of the task were
automated using custom Matlab scripts (MathWorks). A 96-channel
Multichannel Acquisition Processor (MAP; Plexon) was used to in-
terface with the hardware in real time and record the behavioral and
electrophysiological data.

Odors consisted of synthetic food extracts contained in glass jars (A, lem-
on; B, rum; C, anise; D, vanilla; E, banana; V, almond; W, cinnamon; X,
coconut; Y, peppermint; Z, strawberry) that were volatilized with desiccated,
charcoal-filtered air (flow rate, 2 L/min). To prevent cross-contamination,
separate Teflon tubing lines were used for each odor. These lines converged
in a single channel at the bottom of the odor port. In addition, an air vacuum
located at the top of the odor port provided constant negative pressure to
quickly evacuate odor traces. Readings from a volatile organic compound
detector confirmed that odors were cleared from the port 500–750 ms after
odor delivery (interodor intervals were limited by software to �800 ms).

Behavior. The sequence task (Fig. 1A; Allen et al., 2014) involves
repeated presentations of sequences of nonspatial items (odors) and
requires subjects to determine whether each item is presented InSeq
(by holding the nosepoke response until the signal) or OutSeq (by
withdrawing the response before the signal). In the present study, we
used five-item sequences and focused on two types of OutSeq probe
trials (repeats and skips; see below). In each session, a given odor
sequence (e.g., Seq1: ABCDE) was presented 30 –50 times, with
approximately half the presentations including all items InSeq
(ABCDE) and half including one item OutSeq (e.g., the first D in
ABDDE). Each odor presentation was initiated by a nose poke (pro-
vided 800 ms had elapsed since the previous odor) and was termi-
nated after the rat either held for 1.2 s (signaled by a beep) or pulled
his nose out. Water rewards were delivered below the odor port after
correct responses (10 �l) and at the opposite end of the track follow-
ing correct completion of a full sequence (20 �l). Following an incor-
rect response, a buzzing sound was emitted and the sequence was
terminated. To enhance the segmentation between each odor se-
quence (completed correctly or not), rats were required to run to the
end of the track opposite the odor port before the next sequence could
be presented.

Training. Naive rats were initially trained in a series of incremental
stages over �6 – 8 weeks. First, each rat was trained to nosepoke and
hold his nose in the odor port for a water reward. The minimum
required nosepoke duration started at 50 ms and was gradually in-
creased (in 15 ms steps) until rats held reliably for 1.2 s and reached a
criterion of 80% correct nosepokes over three sessions (100 –200
nosepokes per session). Rats were then habituated to odor presenta-
tions in the port (Odor A, then Odors AB) and required to maintain
their nosepoke response for 1.2 s to receive a reward (�3 sessions).
Second, rats were trained to identify InSeq and OutSeq items. Rats
were initially trained on a two-item sequence in which they were
presented with “AB” and “AA” sequences in equal proportions. While
the correct response on the first odor was to hold for �1.2 s (Odor A
was always the first item), the second response required rats to deter-
mine whether the second item was InSeq (AB; hold for �1.2 s to
receive reward) or OutSeq (AA; withdraw before 1.2 s to receive
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reward). After reaching criterion on the two-item sequence, the num-
ber of items per sequence was increased to three, four, and five in
successive stages (criterion: �80% correct across all individual odor
presentations over three sessions). After reaching criterion perfor-
mance on the five-item sequence (�80% correct on both InSeq and
OutSeq items), rats underwent surgery for microdrive implantation.

OutSeq probe trials. Our previous work included a detailed analysis
of performance across different types of OutSeq items in rats and
humans, which suggested that similar cognitive processes and se-
quence representations support task performance across species (Al-

len et al., 2014). However, to maximize sampling, the present study
included only two types of OutSeq items: repeats, in which an earlier
item was presented a second time in the sequence (e.g., ABADE), and
skips, in which an item was presented too early in the sequence (e.g.,
ABDDE, which skipped over item C). Note that OutSeq items could
be presented in any sequence position except the first (i.e., sequences
always began with an InSeq item).

Surgery. Rats received a preoperative injection of the analgesic bu-
prenorphine (0.02 mg/kg, s.c.) �10 min before induction of anesthesia.
General anesthesia was induced using isoflurane (induction: 4%; main-
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Figure 1. Sequence memory task design and performance. Neural activity was recorded as rats performed the cross-species sequence memory task we recently developed, which shows strong
behavioral parallels in rats and humans (Allen et al., 2014). Briefly, this hippocampus-dependent task involves repeated presentations of sequences of nonspatial items (odors) and requires subjects
to determine whether each item is presented InSeq or OutSeq. Importantly, this nonspatial approach allows us to specifically focus on the temporal demands of the task (by holding spatial location
and motor behavior constant) and use different types of probe trials to shed light on underlying sequence representations and cognitive processes. A, Apparatus and behavioral design. Using an
automated odor delivery system (left), rats were presented with series of five odors delivered in the same odor port. In each session, the same sequence was presented multiple times (right), with
approximately half the presentations including all items InSeq (ABCDE) and the other half including one item OutSeq (e.g., ABDDE). Each odor presentation was initiated by a nosepoke and rats were
required to correctly identify the odor as either InSeq (by holding their nosepoke response until the signal at 1.2 s) or OutSeq (by withdrawing their nosepoke before the signal; �1.2 s) to receive
a water reward. B, Experimental timeline (top). Rats were trained preoperatively on Sequence 1 (Seq1; ABCDE) until they reached asymptotic performance. Subsequently, neural activity in region
CA1 was recorded while rats continued to be tested on Seq1 for a few sessions, followed by sessions testing a novel sequence (Seq2: VWXYZ). We focused our analyses on three recording sessions
per animal: the session with the strongest (Well-Trained; Seq1) and weakest (Novel1; first session on Seq2) levels of sequence memory performance, as well as a session exhibiting intermediate
levels of performance (Novel2; second session on Seq2). Example performance from a representative rat on each of the three recording sessions of interest (bottom). Main bar graphs show the mean
nosepoke duration on InSeq and OutSeq items, whereas inset plots show the same data sorted by ordinal position in the sequence (x-axis) and by item (color). The color of individual circles represents
the correct sequence position for each odor presentation: first sequence position in light blue (A or V), second in brown (B or W), third in green (C or X), fourth in purple (D or Y), and fifth in orange
(E or Z). Bars represent the median nosepoke duration for each sequence position (filled bar, InSeq; open bar, OutSeq; n’s indicated by values on bars). These data indicate that the rat reliably
differentiated between InSeq and OutSeq items in the Well-Trained session but not in Novel1, with moderate levels of performance in Novel2 (performance levels approximating group means shown
in C). Note that only InSeq items (A or V) were presented on the first sequence position. C, Group performance on the three recording sessions of interest (Well-Trained, Novel1, and Novel2). We used
a sequence memory index (SMI; Allen et al., 2014; see Materials and Methods) to collapse the behavioral data of each session into a single normalized measure of sequence memory performance.
An SMI value of 1 represents perfect performance (correctly holding on all InSeq items and correctly withdrawing on all OutSeq items), while 0 represents chance performance (identical ratio of hold
and withdraw responses for InSeq and OutSeq items). Rats exhibited strong, weak, and intermediate levels of sequence memory performance across the three sessions. *, Significant t test; ns,
nonsignificant t test; G*, significant G test; Gns, nonsignificant G test; Q*, significant quadratic fit across sessions.
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tenance: 1–2%) mixed with oxygen (800 ml/min). After being placed in
the stereotaxic apparatus, rats were administered glycopyrrulate (0.5 mg/
kg, s.c.) to help prevent respiratory difficulties. A protective ophthalmic
ointment was then applied to their eyes and their scalp was locally anes-
thetized with marcaine (7.5 mg/ml, 0.5 ml, s.c.). Body temperature was
monitored and maintained throughout surgery and a Ringer’s solution
with 5% dextrose was periodically administered to maintain hydration
(total volume of 5 ml, s.c.). The skull was exposed following a midline
incision and adjustments were made to ensure the skull was level. Six
support screws (four titanium, two stainless steel) and a ground screw
(stainless steel; positioned over the cerebellum) were anchored to the
skull. A piece of skull �3 mm in diameter (centered on coordinates: �4.0
mm anteroposterior, 3.5 mm mediolateral) was removed over the left
hippocampus. Quickly after the dura was carefully removed, the base of
the microdrive was lowered onto the exposed cortex, the cavity was filled
with Kwik-Sil (World Precision Instruments), the ground wire was con-
nected, and the microdrive was secured to the support skull screws with
dental cement. Each tetrode was then advanced �900 �m into the brain.
Finally, the incision was sutured and dressed with Neosporin and rats
were returned to a clean cage, where they were monitored until they
awoke from anesthesia. One day following surgery, rats were given an
analgesic (flunixin, 2.5 mg/kg, s.c.) and Neosporin was reapplied to the
incision site.

Electrophysiological recordings. Spiking activity and LFPs were re-
corded from the CA1 pyramidal layer of the dorsal hippocampus as rats
performed the task (Fig. 2). Each chronically implanted microdrive con-
tained 20 independently drivable tetrodes, with each tetrode consisting
of four twisted nichrome wires (13 �m diameter; California Fine Wire)
gold-plated to achieve a final tip impedance of �250 k� (measured at 1
kHz). Following the surgical recovery period, tetrodes were slowly ad-
vanced over a period of �3 weeks while monitoring established elec-
trophysiological signatures of the CA1 pyramidal cell layer (e.g.,
sharp waves, ripples, and theta amplitude). Recording sessions began
when sufficiently large ensembles of neurons (��40) could be re-
corded simultaneously.

Voltage signals recorded from the tetrode tips were referenced to a
ground screw positioned over the cerebellum, and differentially filtered
for single-unit activity (SUA; 154 Hz to 8.8 kHz) and LFPs (1.5– 400 Hz).
The neural signals were then amplified (SUA: 10,000 –32,000�; LFP:

1000�), digitized (SUA: 40 kHz; LFP: 1 kHz), and recorded to disk with
the data acquisition system (MAP, Plexon). Action potentials from indi-
vidual neurons were manually isolated off-line using a combination of
standard waveform features across the four channels of each tetrode
(Offline Sorter, Plexon). Proper isolation was verified using interspike
interval distributions for each isolated unit (assuming a minimum re-
fractory period of 1 ms) and cross-correlograms for each pair of simul-
taneously recorded units on the same tetrode. Putative pyramidal
neurons and interneurons were identified by previously identified char-
acteristic firing rates and valley-to-peak spike widths (Csicsvari et al.,
1998, 1999; Mizuseki and Buzsáki, 2013) and sorted through a minimum
variance algorithm using multivariate Euclidean distances (linkage and
cluster functions in Matlab2013a; Fig. 2B). Both types of neurons were
included in our analyses. To confirm recording sites, current was passed
through the electrodes before perfusion (0.9% PBS followed by 4% para-
formaldehyde) to produce small marking lesions, which were subse-
quently localized on Nissl-stained tissue slices (Fig. 2D).

Sequence memory performance analyses. Performance on the task can
be analyzed using a number of measures (Allen et al., 2014). In the
present study, within-session performance was analyzed using continu-
ous (nosepoke duration) and categorical (expected vs observed frequen-
cies) measures (Fig. 1B). Nosepoke duration analyses used paired t tests
to determine whether the rat held his response significantly longer on
InSeq than OutSeq trials. G tests were used to determine whether the
observed frequency of InSeq and OutSeq responses for a given session (or
trial type) was significantly different than the frequency expected by
chance. Note that the G test provides a measure of performance that
controls for response bias and is a robust alternative to the � 2 test, espe-
cially for datasets that include cells with smaller frequencies (Sokal and
Rohlf, 1995).

To compare performance across sessions or animals, we calculated a
sequence memory index (SMI; Allen et al., 2014, their Eq. 1) as shown in
the following equation:

SMI �
�0.9 � INcor	�0.1 � OUTcor	 � �0.9 � INinc	�0.1 � OUTinc	

� �0.9 � INcor � 0.9 � INinc	�0.1 � OUTcor � 0.1 � OUTinc	
� �0.9 � INcor � 0.1 � OUTinc	�0.9 � INinc � 0.1 � OUTcor	

BA C

D

Figure 2. Electrophysiological recordings. Spiking activity and local field potentials (LFP) were recorded from the dorsal CA1 region of the hippocampus during task performance. All well-isolated
neurons (713 neurons from 13 sessions) were included in the analyses. Raw LFP traces were filtered for 4 –12 Hz band (theta) and 20 – 40 Hz band [beta or low gamma range; labeled slow-gamma
here according to Colgin et al. (2009)]. A, Example activity from simultaneously recorded neurons (putative principal neurons and interneurons) and LFPs (theta and slow-gamma bands) during one
sequence presentation. Inset plots show expanded snapshots of theta and slow-gamma oscillations during an odor presentation. B, Scatterplot showing the distribution of putative principal neurons
and interneurons across the three sessions of interest (Well-Trained, Novel1, Novel2). The majority (84%) of isolated neurons were classified as putative principal neurons (599 principal neurons, 114
interneurons; see Materials and Methods). Importantly, the principal-to-interneuron ratio and the size of simultaneously recorded neuronal ensembles were consistent across sessions. Inset plot
shows representative mean waveforms recorded from the same tetrode (dark gray, pyramidal neurons; light gray, interneurons). C, Example 3-D cluster plot of spike amplitude across wires showing
nine simultaneously recorded neurons on a single tetrode. D, Sample histology slice showing the range of tetrode tip locations (3 tip locations shown; red circles). Tetrodes were targeted at the
location denoted by the CA1 label (anteroposterior, �4.0 mm; mediolateral, 3.5 mm). Less than 10% of the tetrodes were located near or in the CA2 region.
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In essence, the SMI normalizes the proportion of InSeq and OutSeq
items presented during a session and reduces sequence memory perfor-
mance to a single value ranging from �1 to 1. A score of 1 represents
perfect sequence memory, in which a subject would have correctly held
his nosepoke response on all InSeq items and correctly withdrawn on all
OutSeq items. A score of 0 indicates chance performance, such as if
subjects responded to InSeq and OutSeq items with the same response
pattern (e.g., holding until the signal 80% of the time regardless of the
trial type). Negative SMI scores represent performance levels below that
expected by chance. We have previously found that SMI is a normally
distributed measure (Allen et al., 2014, 2015) and used Q–Q plots to
confirm that the present data also closely followed a normal distribution.
Thus, we used traditional (parametric) t tests and ANOVAs for SMI
statistical comparisons. One-sample t tests were used to perform com-
parisons with chance levels, repeated-measures ANOVAs were used to
compare performance across sessions (Well-Trained, Novel1, and
Novel2), and quadratic regression analyses were used to test parallels
between neural activity and performance levels across sessions. Tests
were considered significant at p � 0.05 and significant trends were noted
when p � 0.10.

Single-cell analyses. We analyzed single-cell activity using resam-
pling, nonparametric statistics (1000 permutations; Sokal and Rohlf,
1995; McKenzie et al., 2013; Neunuebel and Knierim, 2014), as spik-
ing activity often violates the assumptions of normality and homoge-
neity of variance required for traditional (parametric) statistics. To
capture the bursting firing properties of hippocampal neurons while
limiting the number of statistical comparisons performed, we first

binned the firing rate of each neuron over 50 ms and then segmented
this activity into 250 ms windows to perform the statistical analyses
(each 250 ms window contained five firing-rate values for that neu-
ron). For each comparison of interest (e.g., InSeq trials vs OutSeq
trials), we calculated the t or F ratio for each 250 ms activity window
separately (e.g., the two 250 ms windows preceding port withdrawal)
and then determined the probability of obtaining a ratio this large (or
larger) by random sampling. This probability distribution was cre-
ated by randomly permuting bins and trials within the same 250 ms
activity window and calculating the associated t or F ratio (a process
that was repeated 1000 times). A comparison was considered statisti-
cally significant if this probability was �0.05 (Bonferroni corrected
for the number of 250 ms activity windows included in the compari-
son). Our primary analyses compared activity across temporal con-
text (InSeq vs OutSeq), but the same approach was used for secondary
analyses comparing activity across odors and sequence positions (see
Fig. 4, four contrasts) or probe types (repeats vs skips; see Fig. 5).

For each neuron that reached statistical significance, we visually in-
spected the pattern of activity across trials using perievent rasters and
histograms (Fig. 3 A, B). The number of statistically significant cells was
then compiled in each session. Note that the neural activity of each ses-
sion was analyzed independently and that no attempts were made to
track the same neurons across sessions for a given rat. As neurons could
have been resampled between sessions, for each cell category we report
cell counts and the corresponding percentage (in relation to the total
number of neurons active during task performance). Since we focused on
periods of neural activity during which the animals’ location and behav-
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Figure 3. Nonspatial sequence coding in hippocampal neurons was linked to sequence memory performance. A–C, Single-unit analyses revealed that, while the animals’ nose remained in the
port, many individual hippocampal neurons fired differentially, depending on the temporal context of the odor presented (whether it was presented InSeq or OutSeq). The majority (73.8%) of these
cells (“sequence cells”) exhibited significantly higher firing rates on odors presented OutSeq compared with InSeq (A, example cell), while the others showed the opposite pattern of activity (26.2%;
B, example cell). Rasters (top) display spikes (ticks) and odor-sampling periods (shading) on individual trials. Perievent time histograms (bottom) show mean firing rates across all trials (
SEM),
binned over 50 ms with minimal smoothing. Note that rasters display equivalent numbers of InSeq and OutSeq trials for clarity but that histograms and statistical analyses (permutation tests; see
Materials and Methods) included all trials with odor-sampling periods of �500 ms. C, The prevalence of sequence cells was positively associated with performance levels. Many sequence cells were
observed when animals performed well in the task (3� the proportion expected by chance on Well-Trained and Novel2 sessions), but the proportion of such cells was no greater than expected by
chance when animals showed poor memory for the sequence (Novel1). This parallel with performance was confirmed by a significant quadratic fit of the magnitude of sequence-cell coding (t ratios
of all cells on InSeq vs OutSeq test) across the three sessions. D–F, Activity from ensembles of simultaneously recorded neurons strongly differentiated between InSeq and OutSeq items (D, example
ensemble). E, Hierarchical clustering analyses revealed that the top two clusters of ensemble activity vectors in multidimensional space (and only clustering to reach statistical significance) reflected
the InSeq/OutSeq status of trials. F, k-means leave-one-out clustering analyses showed that the proportion of trials accurately decoded as InSeq or OutSeq was also positively associated with
performance. More specifically, k-means leave-one-out classification accuracy was higher on sessions with strong sequence memory performance (Well-Trained and Novel2) than on sessions with
weak sequence memory (Novel1) and was correlated with behavioral performance (data not shown). Error bars indicate 
1 SEM. *, Significant t test within 500 ms window indicated by bar
(Bonferroni corrected for two 250 ms bins). **, Significant clusters. Q*, Significant quadratic fit across sessions.
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ior was constant (500 ms window preceding port withdrawal, unless
specified otherwise), the spatial distribution (X-Y coordinates) of spikes
was not different across trial types and thus not described in further
details here.

To help quantify the amount of information provided by individual
cells about the InSeq/OutSeq status of odors, we adapted previous mea-
sures of information content used in spatial (Skaggs et al., 1993) and
temporal processing (MacDonald et al., 2013). The sequential informa-
tion content of each cell was calculated with the following equation:

Sequential Information Content � PIN �	IN

	̂ � log2 �	IN

	̂ �
� POUT �	OUT

	̂ � log2 �	OUT

	̂ �
Where PIN is the probability of an InSeq trial, POUT is the probability of
an OutSeq trial, 	IN is the firing rate of the cell during InSeq trials, 	OUT

is the firing rate of the cell during OutSeq trials, and 	̂ is the overall mean
firing rate of the cell during odor-sampling periods. A value of 0 bit
indicates that the activity of a given cell provides no information about
the InSeq/OutSeq status of trials, while a value of 1 bit indicates that it can
be fully determined by the activity of that cell.

Ensemble analyses. To analyze the pattern of ensemble activity across
InSeq and OutSeq trials, we created an N � M ensemble activity matrix
for each animal and session (N, number of simultaneously recorded
neurons; M, number of trials). For each trial (M: trial1 to trialm), the raw
firing rate of each neuron during the 500 ms odor-sampling period pre-
ceding port withdrawal was calculated (N: neuron1 to neuronn). Note
that the firing rate was averaged over the full 500 ms period, instead of
being binned over 50 ms and analyzed as two separate 250 ms activity
windows as in the single-cell analyses. Therefore, for each trial, the raw
firing rate of all simultaneously recorded neurons produced a population
activity vector in N-dimensional space (where N is the number of simul-
taneously recorded neurons). Neurons that did not fire �1 Hz on any of
the individual odor presentations were excluded from the analysis. As in
our single-cell analyses, the activity of each session was analyzed inde-
pendently and no attempts were made to track the same neurons across
sessions for any of the rats. Ensemble analyses were first performed using
raw firing rates and repeated using z-normalized firing rates. Raw and
normalized data produced the same pattern of results.

We first used standard correlational methods to quantify the similarity
of population activity vectors across trials (Mankin et al., 2012; MacDon-
ald et al., 2013). While this approach provides a simple and intuitive
quantification of the overlap across population vectors, it may not be
particularly suited for our experimental design as we expect all vectors to
be highly correlated because the location and behavior of the animal are
held constant across trials. Therefore, we then used hierarchical agglom-
erative clustering algorithms (linkage and cluster functions in Mat-
lab2013 using Ward’s method as a minimum variance algorithm) to
determine whether the InSeq/OutSeq status of each trial could be accu-
rately decoded from the activity of simultaneously recorded neurons
(Manns and Eichenbaum, 2009; McKenzie et al., 2014). More specifi-
cally, the population activity vectors of each trial from an ensemble ac-
tivity matrix were sorted into a hierarchy of binary clusters that
minimized the within-cluster variance (sum of squares) between constit-
uent population vectors and the cluster centroids. Classification accuracy
was evaluated by determining the degree to which the top two clusters
corresponded to InSeq and OutSeq trials (using percentage of trials cor-
rectly classified). Next, we performed a leave-one-out cross-validated
k-means analysis in which the population activity vector of each trial is
categorized using the activity from all other trials. More specifically, one
trial was removed from the ensemble, a k-means analysis (k � 2) was
performed on the remaining data, and the trial was assigned to one of the
two clusters based on Euclidean distance from the cluster centers (this
process was repeated for each trial). Statistical significance for decoding
accuracy was established using a resampling approach similar to that
used in our single-cell analyses. Specifically, the trial labels for the ensem-
ble matrix were permuted 1000 times and, for each permutation, the

classifier algorithm was rerun and classification accuracy recalculated to
compute the probability of obtaining an accuracy value this large (or
larger) by this random shuffling of the ensemble activity. Decoding ac-
curacy was considered statistically significant if this probability was
�0.05.

LFP analyses. Perievent spectrograms were used to visualize LFP activ-
ity during task performance (NeuroExplorer v5.0, Nex Technologies).
To capture odor-related and sequence-related shifts in the power of os-
cillations at different frequencies throughout entire sequences, seven
separate 4 s perievent spectrograms were produced for each rat and ses-
sion (five centered on each port entry, one immediately before and after
the sequence; see Fig. 6A) using tetrodes with confirmed sequence cell
activity. To compare LFP activity across InSeq and OutSeq items, sepa-
rate spectrograms were produced for InSeq and OutSeq trials, and these
spectrograms were then subtracted from each other to produce a differ-
ence spectrogram for each rat and session.

We focused our analyses on the 4 –12 Hz band (theta) and 20 – 40 Hz
band [beta or low gamma range; labeled slow-gamma here to be consis-
tent with Colgin et al. (2009)], as our spectrograms showed high power in
those bands at the level of individual sequence presentations, individual
rats, and group. To explore differences in the amplitude of these fre-
quency bands, LFPs were bandpass filtered (Butterworth) and phase de-
termined with a Hilbert transform (Brandon et al., 2013). For each
session and animal, the mean waveform for each frequency band was
then obtained by aligning snippets of the filtered LFP signals in 250 ms
windows (centered on the trough, or 0° phase) and averaging all z-score
normalized waveforms together (Csicsvari et al., 1998, 1999; Patel et al.,
2012). To quantify task-related effects, averaging was restricted to the
relevant time periods (PreSeq: 500 ms period preceding the first port
entry; InSeq or OutSeq: 500 ms preceding port withdrawal; see Fig. 6C,E)
and the mean absolute amplitude (average of amplitude values at 0 and
180°; trough and peak, respectively) was calculated for each average
waveform. The mean absolute amplitude was compared across condi-
tions using difference scores. Paired sample t tests were used to test for
significant differences.

Results
Strong, weak, and intermediate levels of sequence memory
performance across sessions
Our analyses focused on three sessions across animals (Well-
Trained, Novel1, Novel2; Fig. 1B,C), which differed by the
amount of training associated with the sequence presented. In the
Well-Trained session, rats were tested on the sequence they
learned before surgery (Seq1: ABCDE) and continued to correctly
identify items as InSeq or OutSeq at a high rate. In fact, according to
a previously established measure (SMI; Allen et al., 2014), rats
showed strong sequence memory in that session (SMIWell-Trained:
0.51 
 0.05; mean 
 SEM; SMIWell-Trained vs Chance: t(4) � 9.57, p �
0.001; Fig. 1C), a performance level comparable to that previ-
ously reported in unoperated rats (SMI, 0.47; Allen et al.,
2014). In addition, single-subject analyses showed that each
rat significantly differentiated between InSeq and OutSeq
items (all G test P’s � 0.001) and that each rat demonstrated
memory for the full sequence, as this effect was observed at
each ordinal position in the sequence (all positional G tests
P’s � 0.05; Fig. 1B, left).

Subsequently, rats were tested on a novel sequence (Seq2:
VWXYZ) for two daily sessions and demonstrated weak (Novel1)
and intermediate (Novel2) levels of performance. As expected,
sequence memory was weakest in the Novel1 session (SMINovel1,
0.09 
 0.05) with none of the rats individually performing above
chance levels (all G test P’s � 0.10). However, some learning had
occurred by the end of the session (second half of trials: mean, 80
trials per rat), as suggested by a trend toward significance for SMI
comparisons with chance levels (SMINovel1 vs Chance: t(3) � 1.76,
p � 0.089) and the fact that the more powerful G test combining
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accuracy data from all rats reached significance (GNovel1(1) � 4.74,
p � 0.01). In the Novel2 session, rats showed significant levels of
sequence memory (SMINovel2 � 0.28 
 0.05; SMINovel2 vs Chance:
t(3) � 5.17, p � 0.001) with each rat individually performing
above-chance levels (G test P’s � 0.05). While later sequence
positions were sampled less often (since sequences were termi-
nated after incorrect responses), it is important to note that ani-
mals performed significantly above chance on all sequence
positions in the Well-Trained and Novel2 sessions (positional G
test P’s � 0.05). SMI analyses across sessions confirmed that
sequence memory performance was associated with the amount
of training (F(2,12) � 17.57, p � 0.001; quadratic fit: F(2,12) �
8.053, p � 0.01; Fig. 1C), a pattern captured by the representative
rat shown in Figure 1B. Overall, these findings indicate that rats
exhibited strong, weak, and intermediate levels of sequence
memory across the three sessions of interest.

Ensemble characteristics were similar across sessions
Spiking and LFP activity was recorded from the CA1 region dur-
ing task performance (Fig. 2). A few marking lesions were ob-
served near the CA2 border (�10% of tetrodes), raising the
possibility that a small proportion of the CA1 cells reported here
were from the CA2. While this proportion is too small for exam-
ining potential subfield differences, it is important to note that
the patterns of activity we observed were well distributed across
tetrode locations. One rat was excluded from the Novel1 and
Novel2 sessions because of damage to his microdrive. We isolated
a total of 713 single units from 13 sessions (five rats in Well-
Trained, four in Novel1, four in Novel2) using conventional mul-
tidimensional cluster sorting techniques. Neurons were then
classified as putative principal neurons or interneurons accord-
ing to previously established firing-rate and waveform character-
istics (Csicsvari et al., 1998, 1999; Mizuseki and Buzsáki, 2013)
using an algorithm that minimizes variance based on Euclidean
distances. The clustering algorithm classified 84% (599 of 713) of
units as principal neurons and 16% (114 of 713) as interneurons
(Fig. 2B). Principal neurons had a mean session firing rate of
0.87 
 0.05 Hz (mean 
 SEM) and a mean valley-to-peak spike
width of 470 
 2 �s. In contrast, interneurons had higher firing
rates (8.32 
 0.93 Hz) and thinner valley-to-peak spike widths
(198 
 3 �s). The observed firing rates and waveform character-
istics are comparable to those of previous reports (Csicsvari et al.,
1998, 1999; Mizuseki and Buzsáki, 2013).

Ensemble characteristics were comparable across the three
sessions of interest. There were no significant differences in the
number of neurons per ensemble across sessions (F(2,12) � 0.08,
p � 0.93) or rats (F(4,12) � 2.36, p � 0.14), with an overall mean
of 55 neurons per ensemble. More specifically, we isolated 274
neurons in the Well-Trained session from five rats (ensemble
sizes: 47, 66, 62, 55, and 44), 234 neurons from four rats in the
Novel1 session (ensemble sizes: 79, 55, 67, and 33), and 205 neu-
rons from four rats in the Novel2 session (ensemble sizes: 47, 69,
50, and 39). Moreover, no significant differences were observed
in the ratio of principal neurons to interneurons recorded across
sessions (5.25:1; F(2,12) � 0.47, p � 0.64).

Hippocampal neurons exhibited sequence coding in the form
of differential activity to InSeq and OutSeq items (sequence
cells)
The main goal of the study was to determine whether, while the
animals’ location and behavior remained constant, hippocampal
neurons differentially coded for individual items, depending on
their temporal context (InSeq or OutSeq). Note that this analysis

excludes the first item of each sequence, as they were only pre-
sented InSeq. We began by collapsing this analysis across sessions
to maximize statistical power in quantifying cell proportions (see
below). Of 713 neurons recorded, we found that 187 neurons
(26.2%) exhibited such sequence coding (hereafter referred to as
“sequence cells” for clarity; Fig. 3A,B), in that they showed sig-
nificant differences in firing rates on InSeq and OutSeq trials
(resampling t test P’s � 0.05; see Materials and Methods). This
proportion is much higher than expected by chance as deter-
mined by the type-I error rate (G(1) � 419.49, p � 0.001), espe-
cially considering the fact that all isolated neurons were included
in the analysis, regardless of overall firing rate. Even under highly
conservative conditions, such as when we maximized the avail-
able odor-sampling window by focusing only on trials with odor-
sampling periods of �500 ms (which excluded many correct
OutSeq trials) and subsequently downsampled the number of
InSeq trials to match the remaining OutSeq trials (which reduced
statistical power), our analyses found a significant proportion of
sequence cells (80 neurons, or 11.2%; G(1) � 18.95, p � 0.001).

To further characterize their firing properties, additional
analyses were performed on the 80 sequence cells identified
with these conservative criteria. First, these additional analyses
showed that a greater proportion of sequence cells fired prefer-
entially to OutSeq items (58 of 80; 72.5%; Fig. 3A) compared with
InSeq items (22 of 80; 27.5%; Fig. 3B), proportions significantly
different than expected from a uniform distribution (G(1) � 8.63,
p � 0.01). Second, sequence cells included both putative princi-
pal neurons (61.3%; 49 of 80) and interneurons (38.9%; 31 of
80). Interestingly, this principal-to-interneuron ratio of 1.58:1 is
significantly lower than that of the full dataset (5.25:1; G(1) �
7.67, p � 0.01), though this increased engagement of interneu-
rons may in part be due to an increase in statistical power associ-
ated with their higher, more consistent firing rates. Finally, to
quantify the amount of sequence information provided by indi-
vidual cells, we adapted previous measures of information con-
tent used in spatial (Skaggs et al., 1993) and temporal processing
(MacDonald et al., 2013). According to this sequential informa-
tion content measure, a value of 0 bits indicates that the cell’s
activity provides no information about the InSeq/OutSeq status
of trials, while a value of 1 bit provides full information. Analyzed
over all trials, sequence cells had a mean information content of
0.16 
 0.03 bits/spike (n � 80), significantly greater than nonse-
quence cells (0.07 
 0.01 bits/spike, n � 633; t(711) � 3.62, p �
0.001). Separating sequence cells by their putative cell type re-
vealed that principal neurons showed a significant trend toward
more information per spike (0.21 
 0.06 bits/spike) than in-
terneurons (0.07 
 0.01 bits/spike; t(78) � 1.929, p � 0.057), but
both cell types exhibited information content values above zero
(tPrincipal(48) � 3.83, p � 0.001; tInterneurons(30) � 4.42, p � 0.001).
Due to their higher firing rates, interneurons are expected to have
lower bits/spike values than principal neurons. However, in-
terneurons have higher bits per second values and can convey as
much sequence information over time as principal cells (se-
quence cells identified as principal cells: 0.26 
 0.09 bits/s; se-
quence cells identified as interneurons: 0.26 
 0.06 bits/s; t(78) �
0.057, p � 0.955). Although information content values cannot
be directly compared across studies due to differences in task
demands (which determine the possible range of bit values), this
analysis shows that the activity of individual hippocampal cells
contains sufficient information to determine the InSeq/OutSeq
status of odor presentations.

It should be noted that the above analyses aligned all trials to
the port-withdrawal response to ensure overt motor dynamics
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(i.e., observable behavior) were identical on InSeq and OutSeq
trials. As such, this approach did not control for the possibility
that InSeq/OutSeq differences in activity were due to potential
differences in internal motor dynamics that may have occurred
before the withdrawal response. To address this possible con-
found, we performed additional analyses that focus on time win-
dows during which such internal dynamics or states should be
equivalent. First, we expanded the conservative analysis men-
tioned above to show that the proportion of sequence cells was
similar across the sampling period; that is, whether we focused
our analysis on the time window immediately preceding the
withdrawal response (250 – 0 ms; 10.7%), the window before that
(500 –250 ms; 7.4%), or the earliest window we could examine
(750 –500 ms; 9.3%). Had the effect been primarily driven by
differences in internal motor dynamics, a different pattern would
have been expected: a high proportion immediately before the
withdrawal response (when differences in internal state should be
the largest) and a low proportion in the earliest time period
(when such differences should be smaller). Second, we per-
formed another analysis in which we specifically controlled for
time spent in the port (which aligned internal motor dynamics
across InSeq and OutSeq trials) and obtained a proportion of
sequence cells comparable to that reported in our previous anal-
yses (10.0% compared with 11.2%). More precisely, this analysis
aligned trials to when the nose entered the port (this can be visu-
alized by aligning trials in our raster plots to the beginning of the
shaded areas) and focused the 500 ms analysis window on the
time period when animals are expected to be identifying the odor
and its InSeq/OutSeq status (i.e., 250 –750 ms). Notably, this ef-
fect cannot be attributed to withdrawal responses during this
sampling window, as those trials were not included in the analy-
sis. Combined with evidence of conjunctive subtypes of sequence
cells (see below), these results strongly suggest that differential
activity to InSeq and OutSeq items cannot be accounted for sim-
ply by potential differences in internal motor dynamics or state.

Neural ensembles accurately distinguished the temporal
context (InSeq/OutSeq) of individual trials
Following up on the above finding that many individual neurons
fired differentially to InSeq and OutSeq trials (i.e., 26% of neu-
rons were sequence cells), we then examined whether the activity
of simultaneously recorded neuronal ensembles (raw firing rates)
accurately represented the InSeq/OutSeq status of items on a
trial-by-trial basis. Again, this analysis was initially collapsed
across recording sessions to maximize sample sizes (N � 13 en-
sembles). As our initial approach to quantify ensemble activity,
we used a population vector correlation method similar to that
previously used in spatial (Mankin et al., 2012) and temporal
processing (MacDonald et al., 2013). Briefly, for each session, we
calculated the correlation between population activity vectors
across trial conditions (each vector representing the firing rate
over a 500 ms bin preceding port withdrawal for each neuron on
that specific trial). As expected, InSeq trial vectors were highly
correlated to each other (correlations between odd and even tri-
als; mean r 2 across ensembles, 0.99 
 0.001 SEM, P’s � 0.001).
OutSeq trial vectors were likewise highly correlated to each other
(odd/even correlations; mean r 2 � 0.97 
 0.004 SEM, P’s �
0.001). Importantly, correlations between InSeq and OutSeq trial
vectors were lower (mean r 2 � 0.83 
 0.049 SEM, P’s � 0.001)
and significantly different from odd/even correlations on InSeq
trials (t(12) � 3.22, p � 0.01) and OutSeq trials (t(12) � 2.92, p �
0.05) across ensembles. The same pattern (significantly lower
correlations between InSeq and OutSeq trials than between odd

and even trials) was observed using z-score normalized firing
rates (all P’s � 0.05). These results indicate that population ac-
tivity vectors were significantly different, depending on the tem-
poral context of the item presented.

To determine whether the InSeq/OutSeq status of a presented
item could be decoded from the ensemble activity, we then ana-
lyzed the data using a hierarchical clustering algorithm similar to
that used by McKenzie et al. (2014) to differentiate categorical
representations in hippocampal ensembles. Briefly, the popula-
tion activity vector of each trial was fed to a classifier (raw firing
rates), which assigned each vector to binary clusters by minimiz-
ing variance using Ward’s method. Each vector was iteratively
combined into larger clusters to form a hierarchical tree (Fig. 3E).
Classification accuracy was calculated by comparing the overlap
(percentage) between the two main clusters of population vectors
at the top of the tree (clustered according to their similarity) and
the actual InSeq/OutSeq status of the trials. This analysis showed
that these two clusters of population vectors strongly matched the
actual distributions of InSeq and OutSeq trials (Fig. 3E). In fact,
overall InSeq/OutSeq trial classification accuracy was 80.01 

3.83%, and 9 of 13 individual ensembles successfully classified the
temporal context of trials (permutation P’s � 0.01). Importantly,
the first branch point in the dendrogram split the population
vectors according to whether they were recorded during InSeq
versus OutSeq trials, indicating that temporal context drove the
largest degree of pattern separation. Only this first branch point
was significant, indicating that clusters at lower levels did not
account for a meaningful proportion of the cluster variances. We
then used a standard k-means and a leave-one-out validation
approach to perform the same classification (k � 2), with test trial
assignments determined by the minimum Euclidean distance to
model cluster centers. This approach produced similar results
(k-means accuracy: 84.66 
 1.90%; k-means leave-one-out accu-
racy: 80.08 
 3.38%; t(12) � 0.0824, p � 0.936), and 11 of 13
individual ensembles successfully classified the InSeq/OutSeq
status of trials (permutation P’s � 0.01). The same pattern of
classification accuracy was observed using z-score normalized
firing rates (mean difference in accuracy between raw and nor-
malized activity: 1% for k-means, 3% for hierarchical). Collec-
tively, these different approaches confirm that CA1 ensemble
activity coded for the temporal context of presented items on a
trial-by-trial basis.

Finally, to examine whether certain types of trials were pref-
erentially represented in misclassified trials, we further examined
the results of the hierarchical cluster analysis to quantify the pro-
portion of misclassifications across InSeq/OutSeq status, odors,
or ordinal positions. We found that InSeq trials were misclassi-
fied less often than OutSeq trials (proportion misclassified: In-
Seq, 0.16; OutSeq, 0.49; t(12) � �5.364, p � 0.001). As expected,
the proportion of misclassified trials across ensembles was nega-
tively correlated with behavioral performance (InSeq and OutSeq
trials combined; r � �0.566, p � 0.003, n � 26). A similar pat-
tern was observed when InSeq and OutSeq misclassifications
were examined separately, but the correlations did not reach sig-
nificance (InSeq: r � �0.398, p � 0.18, n � 13; OutSeq: r �
�0.402, p � 0.18, n � 13). In addition, we found that odors
BCDE were misclassified in similar proportions (mean propor-
tion misclassified across odors: �0.2; FBCDE(3,12) � 1.372, p �
0.298; FWXYZ (3,21) � 1.276, p � 0.309). Note that odors A and V
(when presented OutSeq) were more likely to be misclassified
than the other odors (A, 0.52; V, 0.49; FABCDE(4,16) � 3.498, p �
0.05, and FVWXYZ(4,28) � 5.021, p � 0.01), but this effect was not
associated with performance (r � �0.255, p � 0.401, n � 13) and
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likely reflects the fact that the first items of the sequences were not
included in the cluster analysis. Interestingly, our results also
suggest a gradual increase in misclassifications from sequence
position 2–5 (significant linear contrast: F(1,12) � 6.528, p � 0.05;
nonsignificant main effect: F2345(3,36) � 2.205, p � 0.104).

Sequence coding was linked to sequence memory
performance
To examine the relationship between sequence coding and se-
quence memory, we performed separate analyses for each of the
three sessions of interest (Well-Trained, Novel1, and Novel2).
Our single-cell analyses revealed that the proportion of sequence
cells (the proportion identified by our most conservative criteria)
paralleled sequence memory performance across the three ses-
sions (Fig. 3C): it was highest in the Well-Trained session (15.3%;
42 of 274 cells), lowest in the Novel1 session (4.3%; 10 of 234
cells), and high again in the Novel2 session (13.7%; 28 of 205
cells). This parallel was confirmed by a significant quadratic fit in
the magnitude of temporal context coding (absolute values of t
ratios of all cells on InSeq vs OutSeq comparison; n � 713) across
the three sessions (FQUAD(2,712) � 6.307, p � 0.01). This relation-
ship was examined in more detail by correlating the proportion of
sequence cells within a given ensemble with performance across
rats and sessions. These analyses showed that the proportion of
sequence cells was associated with SMI values (significant trend,
r � 0.443, p � 0.075, n � 13) and significantly correlated with
accuracy on OutSeq trials (r � 0.526, p � 0.05, n � 13).

Our ensemble analyses showed a similar pattern across the
three sessions (Fig. 3F). As reported above, the proportion of
ensembles showing above-chance accuracy in classifying trials as
InSeq/OutSeq was high across sessions (k � 1: 11 of 13 in total;
hierarchical: 9 of 13), which is not surprising given the prevalence
of sequence cells and evidence of above-chance performance in
all three sessions (second half of trials in the case of Novel1).
More importantly, mean classification accuracy values paralleled
performance across sessions: they were highest in the Well-
Trained session (k � 1: 85.5%; hierarchical: 83.3%), lowest in the
Novel1 session (k � 1: 79.4%; hierarchical: 77.7%), and second
highest in the Novel2 session (k � 1: 84.7%; hierarchical: 78.5%),
but in neither case did classification accuracy reach a significant
quadratic fit across sessions (k � 1: FQUAD(2,12) � 0.083, p �
0.921; hierarchical: FQUAD(2,12) � 0.055, p � 0.947). However,
classification accuracy values were associated with SMI values
(significant trends; k � 1: r � 0.46, p � 0.055, n � 13; hierarchi-
cal: r � 0.443, p � 0.075, n � 13) and significantly correlated with
accuracy on OutSeq trials (k � 1: r � 0.716, p � 0.01, n � 13;
hierarchical: r � 0.526, p � 0.05, n � 13). Collectively, these
findings indicate that this form of sequence coding is associated
with sequence memory performance at the single-cell and en-
semble level.

General, conjunctive, and probe-specific sequence cells
Sequence cells were identified as cells that fired differentially on
InSeq and OutSeq trials. Since this analysis collapses across odors
and sequence positions, it may have masked more specific types
of sequence coding. To explore this possibility, we examined each
sequence cell’s activity across four different contrasts: InSeq ver-
sus OutSeq trials (C1), InSeq trials sorted by odor (C2), OutSeq
trials sorted by Odor (C3), and OutSeq trials sorted by ordinal
position in the sequence (C4). This qualitative approach provided
evidence for two primary categories of sequence cells, which were
then confirmed using resampling statistics (Fig. 4; see Materials and
Methods). We refer to the first category as “general sequence cells” as

they fired differentially to the overall InSeq/OutSeq status of items,
regardless of the specific odor presented or the sequence position in
which it occurred (P for C1 � 0.05; P’s for C2–C4 � 0.05; 60% or 48
of 80 of sequence cells). General sequence cells could be further
divided into cells that fired preferentially to InSeq items (InSeq cells;
29.2% or 14 of 48 of general sequence cells; Fig. 4, Column 1) or to
OutSeq items (OutSeq cells; 70.8% or 34 of 48 of general sequence
cells; Fig. 4, Column 2).

We refer to the second category as “conjunctive sequence
cells” as they showed selectivity for specific conjunctions of item
and sequence position information (40.0% or 32 of 80 of se-
quence cells). Subtypes of conjunctive cells were identified ac-
cording to which contrast (in addition to C1) yielded a
statistically significant ANOVA. The first subtype exhibited dif-
ferential activity when specific odors were presented InSeq (P for
C2 � 0.05; 25.0% or 8 of 32 of conjunctive cells). For instance, the
cell in Figure 4B, left, fired maximally to Odor B when it was
presented on InSeq trials. Conversely, other conjunctive cells pri-
marily coded for specific mismatches between item and position
information, which could only be observed on OutSeq trials
(when the two types of information are uncoupled). In fact, the
second subtype exhibited differential activity when specific odors
were presented OutSeq (P for C3 � 0.05; 46.9% or 15 of 32 of
conjunctive cells; Fig. 4B, cell in right column showed peak firing
to Odor V when it was presented on OutSeq trials) and, the third
subtype, when specific ordinal positions in the sequence included
OutSeq items (P’s for C4 � 0.05; 37.5% or 12 of 32 of conjunctive
cells; e.g., peak firing to third position when an OutSeq odor was
presented). This evidence of odor selectivity (second subtype) in
hippocampal neurons is consistent with previous work (Wood et
al., 1999) but, to our knowledge, ordinal selectivity (third sub-
type) has not been previously demonstrated and will need to be
characterized in further detail in future experiments. A few cells
(3 of 32) showed significant selectivity for �1 contrast (excluding
C1), indicating that these subtypes were largely nonoverlapping.
Finally, additional analyses have confirmed that conjunctive se-
quence cells were observed in similar proportions after control-
ling for potential differences in internal motor dynamics (by
aligning trials to port entry and focusing on the 250 –750 ms time
window; 43.6% compared with 40.0% in the original analysis)
and that they were found in both putative principal neurons (18
of 32) and interneurons (14 of 32). Overall, this evidence of gen-
erality and specificity in sequence cell coding suggests that the
hippocampal network can represent both general information
about the temporal context of items and detailed information
about specific items in specific sequence positions.

It is important to note that the occasional under-repre-
sentation of a specific trial type is unlikely to significantly bias
these analyses because the ANOVAs examined differential activ-
ity across all odors/positions (omnibus tests) and because resam-
pling statistics are generally robust in cases of small or unequal n’s
(the critical P value was determined by permuting the actual trials
1000 times). In fact, this sampling issue is more likely to bias the
analyses toward underestimating the actual proportion of con-
junctive cells. That being said, we did not have sufficient power to
perform all post hoc pairwise comparisons (while properly con-
trolling for the familywise error rate) and thus are not in a posi-
tion to specifically compare activity between individual odors or
positions. Instead, we examined selectivity across odors or se-
quence positions using a rank-order analysis, an approach that
allowed us to maximize power by quantifying selectivity in a
single test. First, for each conjunctive cell, we rank-ordered the
odors according to the cell’s mean response rate (1, odor with
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highest mean firing rate; 5, odor with lowest mean firing rate);
then we determined whether the mean rank orders (one per cell)
differed across odors. This analysis revealed no significant differ-
ence across odors (ABCDE: F(4,20) � 2.083, p � 0.536; VWXYZ:
F(4,32) � 1.915, p � 0.132), suggesting that odor selectivity was
well distributed across odors. In contrast, the corresponding
analysis revealed a graded effect across sequence positions (linear
contrast: F(1,11) � 30.264, p � 0.001; main effect of position:

F(3,33) � 10.809, p � 0.001), with higher firing rates for earlier
sequence positions (mean rank order: pos2 � 1.5, pos3 � 2.2,
pos4 � 3.0, pos5 � 3.5).

Finally, general and conjunctive sequence cells that displayed
preferential firing to OutSeq items were further examined by
plotting their activity across the two types of OutSeq probe trials
(repeats and skips; see Materials and Methods). Interestingly, we
found many that showed selectivity to one of the two probe types

A
 

B

Figure 4. General and conjunctive sequence coding. To identify potential subtypes, the activity of each sequence cell was examined across four different contrasts: InSeq versus OutSeq trials (C1),
InSeq trials sorted by odor (C2), OutSeq trials sorted by Odor (C3), and OutSeq trials sorted by ordinal position in the sequence (C4). The activity of four example neurons (one per column) is shown here
across the four contrasts (rows) to illustrate some of the observed subtypes. Shaded area in rasters represents odor-sampling durations on individual trials. Perievent time histograms show mean
firing rates across all trials (
1 SEM), binned over 50 ms with minimal smoothing. Note that activity to the first odor of each sequence (A or V when presented InSeq) is not shown because it would
introduce running-related activity before the nosepoke, making the plots more difficult to interpret. A, General sequence cells (60% of sequence cells) fired differentially to the overall InSeq/OutSeq
status of items without apparent selectivity for the specific odors presented or the sequence positions in which they occurred (significant t test on C1, but nonsignificant ANOVAs on C2–C4). For
instance, the left column shows an example of a neuron that significantly increased its firing rate on InSeq trials without clear selectivity across odors presented (compare rows 1, 2; InSeq cell). The
right column shows a different neuron, in this case a putative interneuron, which significantly increased its firing rate on OutSeq trials but showed little selectivity for the odor presented or the
sequence position in which it occurred (compare rows 1, 3, 4; OutSeq cell). B, Conjunctive sequence cells (40% of sequence cells) showed selectivity for specific conjunctions of item and sequence
position information. Subtypes of conjunctive cells were identified according to which contrast (in addition to C1) yielded a statistically significant ANOVA. The first subtype (25% of conjunctive cells)
exhibited differential activity when specific odors were presented InSeq (significant ANOVA on C2, but not on C3 or C4). For instance, the left column displays an example neuron for which the
increased firing rate to InSeq items (Row 1) was primarily driven by a specificity to Odor B when presented InSeq (Row 2). The same neuron was virtually silent on OutSeq trials (Rows 3 and 4).
Conversely, other conjunctive cells primarily coded for specific mismatches between item and sequence position information. In fact, the second subtype (46.9% of conjunctive cells) exhibited
differential activity when specific odors were presented OutSeq (significant ANOVA on C3, but not on C2 or C4). For instance, the right column displays an example for which the higher activity on
OutSeq trials (Row 1) was primarily driven by selectivity to Odor V when presented OutSeq (Row 3), with a nonsignificant influence of the sequence position in which it was presented (Row 4). The
third subtype (37.5% of conjunctive cells) fired differentially when specific ordinal positions in the sequence included OutSeq items (significant ANOVA on C4, but not on C2 or C3; data not shown).
*, Significant t test or ANOVA within 500 ms window indicated by bar (Bonferroni corrected for two 250 ms bins).
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(34.5% or 20 of 58; Fig. 5). These probe-specific sequence cells
either fired more to repeats (35.0% or 7 of 20 of probe-specific
sequence cells) or to skips (65.0% or 13 of 20 of probe-specific
sequence cells), suggesting hippocampal representations also in-
clude specific types of sequence memory violations.

Theta and slow-gamma oscillatory dynamics exhibited
consistent shifts during task performance, but only slow
gamma was modulated by the temporal context of items
We next explored the oscillatory dynamics of CA1 during task
performance. To do so, we produced mean perievent spectro-
grams (PESGs; averaging across all completed sequences in a
session) for each rat, as well as for the whole group. These spec-
trograms showed two clear oscillatory bands with high power,
one in the theta range (4 –12 Hz) and the other in the slow-
gamma range (20 – 40 Hz; Igarashi et al., 2014), which were ap-
parent at the level of individual trials, individual rats, and group.
We therefore focused our analyses on those frequency bands. As
expected, theta power was high during running (dark red band in
4 –12 Hz range preceding first item of the sequence; Fig. 6A).
However, upon initiation of odor sampling, theta decreased (in
both power and center frequency) and slow-gamma power in-
creased (yellow clouds in the 20 – 40 Hz range during odor-
sampling windows; Fig 6A). Similar increases in slow-gamma
power during odor sampling have been described previously
(Igarashi et al., 2014). Last, both theta and slow gamma showed a
large decrease in power after port withdrawal. It should be noted
that while Figure 6A only shows the average PESG (across se-
quences and rats), the same overall pattern of theta and slow-

gamma dynamics was observed within individual rats and
individual sequence presentations (data not shown). Overall,
these findings suggest a consistent pattern of theta and slow-
gamma power dynamics during task performance.

Next, we examined whether these oscillations were influenced
by the temporal context of odor presentations. To test this possi-
bility, we produced separate PESGs for InSeq and OutSeq item
presentations (Fig. 6B, left, middle) and computed their z-scored
difference to produce a difference spectrogram (Fig. 6B, right).
This approach showed that InSeq odors were associated with
stronger slow-gamma power compared with OutSeq odors, but
differences in theta power were not evident. Differences in the
delta band were also observed (0 – 4 Hz; similar to MacDonald et
al., 2013), but were not explored further here.

To quantify task-related effects on theta and slow-gamma
bands, an analysis of theta and slow-gamma waveforms (aver-
aged across trials and animals) was performed (Csicsvari et al.,
1999; Patel et al., 2012). This approach allowed us to use simple
statistical tests to compare waveform amplitudes across sampling
windows (PreSeq vs Odors) or temporal context (InSeq vs Out-
Seq). Mean theta and slow-gamma waveforms were calculated
from bandpass-filtered LFP recordings sampled from the same
time window used in single-cell and ensemble analyses (500 ms
preceding port withdrawal; Fig. 6C,E). First, we tested differences
between PreSeq (before the first odor) and odor-sampling peri-
ods (combining both InSeq and OutSeq odors). Consistent with
the spectrograms, mean theta waveform amplitude was signifi-
cantly higher during the PreSeq period compared with the odor-
sampling periods in the Well-Trained session (DiffPreSeq � Odors �

Figure 5. Probe-type-specific activity. Statistical analyses revealed that a proportion of sequence cells (34.5%) fired differentially across the two types of OutSeq probe trials (repeats and skips;
Allen et al., 2014). Briefly, repeats consist of OutSeq trials in which an earlier item is presented a second time in the sequence (e.g., ABA), whereas skips are OutSeq trials in which an item is presented
too early in the sequence (e.g., ABD, which skips over item C). The left column shows an example OutSeq cell selective for repeats (35% of probe-specific sequence cells) and the right column shows
an example OutSeq cell exhibiting preferential firing to skips (65% of probe-specific sequence cells). As in Figure 3 and 4, rasters display neural activity for a subset of InSeq trials but perievent
histograms (mean firing rate 
 SEM) and statistical analyses include all trials. *, Significant t test within 500 ms window indicated by bar (Bonferroni corrected for two 250 ms bins).

Allen et al. • Sequence Coding in the Hippocampus J. Neurosci., February 3, 2016 • 36(5):1547–1563 • 1557



0.20 
 0.06; t(4) � 3.484, p � 0.05), but there were no significant
differences in the Novel1 (DiffPreSeq � Odors � �0.06 
 0.13; t(3)

� �0.516, p � 0.642) or Novel2 sessions (DiffPreSeq � Odors �
�0.05 
 0.03; t(3) � 0.231, p � 0.832; Fig. 6C). In contrast, slow
gamma showed consistently larger amplitudes during odor-
sampling periods compared with PreSeq periods, including the
Well-Trained (DiffPreSeq � Odors � �0.84 
 0.17; t(4) � �4.984,
p � 0.01), Novel1 (DiffPreSeq � Odors � �0.85 
 0.23; t(3) �
�3.686, p � 0.05), and Novel2 sessions (DiffPreSeq � Odors �
�0.56 
 0.15; t(3) � �3.928, p � 0.05; Fig. 6E). Overall, these

analyses confirm that theta is stronger before odor sampling be-
gins while slow gamma is stronger during odor sampling.

We then examined differences in waveform amplitude based
on the temporal context of items (InSeq vs OutSeq). There were
no significant effects on theta waveform amplitudes in the Well-
Trained (DiffInSeq � OutSeq � 0.10 
 0.13; t(4) � 0.736, p � 0.503),
Novel1 (DiffInSeq � OutSeq � 0.22 
 0.16; t(3) � 1.40, p � 0.255),
or Novel2 session (DiffInSeq � OutSeq � 0.18 
 0.06; t(3) � 3.09,
p � 0.059; Fig. 6C,D). In contrast, effects of temporal context
were observed on slow-gamma waveform amplitude. In fact,

A

B

C D

E F

Figure 6. Slow-gamma, but not theta, oscillations were modulated by the temporal context (InSeq/OutSeq) of items. A, Group PESG for all completed sequences, displayed in successive 4 s blocks
aligned across trials and animals. The PESG shows a reliable shift between theta (4 –12 Hz) and slow-gamma (20 – 40 Hz) oscillations during task performance. Although clear theta oscillations were
observed during odor sampling, theta power was strongest during the running bouts between sequences. Conversely, slow-gamma oscillations were strongest during odor-sampling periods. The
same pattern was also apparent at the level of individual rats or sequence presentations (data not shown). B, Group PESGs for InSeq odors (left), OutSeq odors (middle), and InSeq–OutSeq difference
(right). Slow-gamma power was higher on InSeq than OutSeq trials, but theta power showed no clear modulation by the temporal context of odors. C, D, Theta amplitude was similar between InSeq
and OutSeq trials across sessions. C, Mean theta waveforms (z-score normalized amplitude 
SEM) during InSeq and OutSeq trials (500 ms preceding port withdrawal), with PreSeq period shown
for comparison (500 ms preceding presentation of first odor). D, Mean differences in z-score normalized theta ampitude (
SEM) between InSeq and OutSeq trials. E, F, Significant differences in
slow-gamma amplitude were observed between InSeq and OutSeq trials across sessions. E, Mean slow-gamma waveforms (z-score normalized amplitude 
 SEM) during InSeq and OutSeq trials,
with PreSeq period showed for comparison. F, Mean differences in z-score normalized slow-gamma ampitude (
SEM) between InSeq and OutSeq trials were associated with performance levels
across sessions (significant quadratic fit). Q*, Significant quadratic fit.
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slow-gamma waveforms were of larger amplitude for InSeq odors
in the Well-Trained session (DiffInSeq � OutSeq � 0.60 
 0.16; t(4)

� 3.802, p � 0.05) but this difference was not present in the
Novel1 session (DiffInSeq � OutSeq � 0.04 
 0.07; t(3) � 0.568, p �
0.610; Fig. 6E,F). Although slow-gamma amplitude on InSeq
items increased again in the Novel2 session, it did not reach sig-
nificance (DiffInSeq � OutSeq � 0.29 
 0.15; t(3) � 1.956, p �
0.145). To follow up on this analysis, we showed that this effect of
temporal context on slow-gamma amplitude paralleled behav-
ioral performance across sessions, as demonstrated by a signifi-
cant quadratic fit (FQUAD(2,12) � 4.282, p � 0.05). Furthermore,
the size of this effect of temporal context on slow-gamma ampli-
tude was correlated with SMI scores (r � 0.680, p � 0.01; n � 13)
and OutSeq accuracy (r � 0.783, p � 0.001; n � 13). No signifi-
cant relationship was observed between theta amplitude and

performance across sessions (quadratic fit: FQUAD(2,12) � 0.274,
p � 0.766; correlation with SMI: r � 0.021, p � 0.946; Fig. 6D).
Collectively, these findings suggest that changes in slow-gamma
oscillations are associated with the processing of the temporal
context of items.

Spike–phase relationships did not strongly differentiate the
temporal context of items, but the magnitude of slow-gamma
modulation was associated with sequence memory
performance
We next explored the relationship between spike times and the
phase of theta and slow-gamma oscillations. Six spike–phase
plots (three sampling periods: PreSeq, InSeq, OutSeq; two bands:
theta and slow gamma; Fig. 7A,B) were constructed for each of
the 713 isolated neurons. Spike–phase relationships were deter-

A C

DB

Figure 7. Spike–phase relationships did not strongly differentiate the temporal context of items, but the magnitude of slow-gamma modulation showed a robust association with sequence
memory performance. A, Spiking activity from example tetrode showing significant theta modulation across PreSeq and odor-sampling periods (InSeq or OutSeq; top) but no significant slow-
gamma modulation (bottom). All spike–phase relationships were determined using the local LFP for each cell and tetrode (x-axis: 0° represents the trough of theta or slow gamma, and 180° the
peak). Yellow waveforms represent the sine waves fitted to the spike–phase distributions. B, Example from another tetrode showing significant theta modulation during the PreSeq period (but not
during odor sampling; top) and significant slow-gamma modulation across time periods (bottom). C, Magnitude of theta (top) or slow-gamma (bottom) modulation across sampling periods and
sessions (mean F ratio across all cells 
 SEM; n � 713). The magnitude of the phase modulation during odor sampling (InSeq or OutSeq) significantly paralleled performance across sessions for slow
gamma (significant quadratic fit). The same pattern did not reach significance for theta, as the variability was considerably higher (note large SEM despite n’s of 713). Theta and slow-gamma
modulations showed a small but significant difference between InSeq and OutSeq trials (small effect sizes according to Cohen’s d). Percentages on bars indicate proportions of significantly
modulated cells. D, Preferred phase of spiking activity for cells with significant theta (top) or slow-gamma (bottom) modulation. Circular histograms show the proportion of cells with significant
preferred phases across 18° bins (inner circles indicate a proportion of 0.05; outer circles, 0.15). Arrows show the resultant vector length (inner circles indicate r � 0.05; outer circles, r � 0.15) and
direction (circular mean). No significant differences were observed across sampling periods (PreSeq, InSeq, or OutSeq) for any of the plots. All sessions combined (left): the mean preferred phase
(collapsed across sampling periods) was significantly different between theta and slow gamma (theta: 305.04°; slow gamma: 181.45°; dotted lines indicate 95% confidence intervals of means). A
qualitatively similar pattern was observed in each session (Well-Trained, Novel1, Novel2) but the resulting reduction in sampling increased error variance and the effects did not reach significance.
M*, Significant modulation (theta or slow gamma); Q*, significant quadratic fit; *, significant difference in preferred phase.
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mined by modeling sine waves to each plot and testing for the
statistical significance of the fit. We report that the proportion of
neurons showing significant slow-gamma modulation was rela-
tively consistent across the PreSeq and odor-sampling periods
(�10%) and that the magnitude of slow-gamma modulation
during odor-sampling periods (InSeq and OutSeq) significantly
paralleled sequence memory performance across sessions (tested
with a quadratic regression on the F ratios of the sine wave fit for
all cells across the three sessions; PreSeq: FQUAD(2,712) � 0.333,
p � 0.717; InSeq: FQUAD(2,712) � 8.603, p � 0.001; OutSeq:
FQUAD(2,712) � 6.960, p � 0.001; Fig. 7C, bottom row). Addition-
ally, slow-gamma modulations showed a small but significant
difference between InSeq and OutSeq trials (F ratios difference �
0.16; t(712) � 2.182, p � 0.05; small effect size according to Co-
hen’s d value of 0.08). In contrast, the proportion of neurons with
significant theta modulation was considerably higher during the
PreSeq period (�30%) than during the odor-sampling period
(�12%) and the parallels between the magnitude of theta mod-
ulation and performance across sessions were not significant
(PreSeq: FQUAD(2,712) � 0.495, p � 0.610; InSeq: FQUAD(2,712) �
2.048, p � 0.130; OutSeq: FQUAD(2,712) � 1.601, p � 0.202; Fig.
7C, top row). Note that while theta and slow-gamma means
showed a comparable pattern across sessions, the variability
was considerably higher in theta (note large SEM despite n’s of
713). Theta modulations also showed a small but significant
difference between InSeq and OutSeq trials (F ratios differ-
ence, 0.24; t(712) � 2.456, p � 0.05; small effect size: Cohen’s
d � 0.09).

Subsequently, we examined the preferred phase of spiking
activity for only those cells with significant theta or slow-
gamma modulation (including both principal neurons and
interneurons). This analysis shows that spiking activity tended
to occur at different phases for theta (mean preferred phase of
theta-modulated cells: 305.04°) and slow gamma (mean pre-
ferred phase of slow-gamma-modulated cells: 181.45°;
Watson-Williams F(1,570) � 143.584, p � 0.001; Fig. 7D).
However, the preferred phases did not significantly vary across
PreSeq, InSeq, or OutSeq sampling periods (Watson-Williams
F tests P’s � 0.10). We followed up on this negative finding by
examining a subsample of cells that showed significant spike–
phase relationships in all three sampling periods and analyzed
the absolute circular distance between the PreSeq and odor-
sampling periods (InSeq and OutSeq). Only modest preferred
phase shifts were observed across cells (theta: �19.5° shift
from PreSeq to odor period; slow gamma: �12.0° shift) and
none reached significance across sampling periods (Watson-
Williams F test P’s � 0.10). In addition, we examined the
distribution of phase differences across these cells and saw no
evidence of a bimodal distribution, arguing against the possi-
bility that a subset of the population showed a strong and
consistent phase difference that was being masked by the rest
of the population.

Combined with the above evidence that slow-gamma ampli-
tude is modulated by InSeq/OutSeq status and performance
across sessions, the finding that the magnitude of slow-gamma
modulation significantly parallels performance strongly suggests
that this oscillation is important for sequence memory perfor-
mance. Our findings also suggest that theta oscillations and the
spike–phase relationships we examined (proportions of modu-
lated cells, the magnitude of the modulation, or the preferred
phase of their spiking activity) do not play a key role in identifying
the temporal context of items.

Discussion
In this study, we tested the hypothesis that the hippocampus
represents sequential relationships among nonspatial events by
differentially firing to the same items, depending on the sequen-
tial position in which they occurred. We discovered that CA1
activity strongly differentiated the temporal context of items
(whether they were presented InSeq or OutSeq) at the level of
individual neurons, neuronal ensembles, and LFPs, and that this
coding was linked to sequence memory performance. At the
single-cell level, we identified populations of neurons that differ-
entiated the InSeq/OutSeq status of items across odors (general
sequence cells) or for specific conjunctions of item and sequence
position information (conjunctive sequence cells), as well as cells
that showed selectivity for specific types of OutSeq probe trials
(i.e., repeats or skips). Importantly, the only distinctive feature of
OutSeq trials was the incorrect sequential position of the item, as
all odors were highly familiar to the animals and the animals’
location, behavior, and motivation was well matched across In-
Seq and OutSeq trials. Therefore, sequence cell activity likely re-
flects the cognitive process by which items were identified as
InSeq or OutSeq by determining whether the currently presented
item matched the item predicted by memory of the sequence.
This form of activity provides a neural mechanism for the strong
BOLD fMRI activations observed in the hippocampus when con-
trasting InSeq and OutSeq trials in human subjects performing
the task (Boucquey et al., 2014, 2015). Our findings are consistent
with previous electrophysiological studies showing that temporal
modulation of hippocampal ensemble activity predicts subse-
quent order memory success (Manns et al., 2007) and that
individual hippocampal neurons exhibit sequence-dependent
activity before the presentation of ambiguous stimuli in a
sequence-disambiguation task (Ginther et al., 2011). Impor-
tantly, our novel experimental approach allowed us to extend
these previous findings by directly examining the coding of spe-
cific items as a function of their sequential position, while holding
the location and behavior of the animal constant. Overall, our
results are also consistent with evidence from other nonspatial
sequence memory tasks in rodents and humans, which showed
that the hippocampus plays a key role in supporting the ability to
remember the order in which items were presented (Fortin et al.,
2002; Kesner et al., 2002; Kumaran and Maguire, 2006; Ezzyat
and Davachi, 2014; Hsieh et al., 2014).

An alternative explanation to consider for the phenomenon of
sequence cells is that it reflects a general role of the hippocampus
in match/mismatch detection or in responding to unexpected or
novel items (Vinogradova, 2001; Grunwald and Kurthen, 2006;
Kumaran and Maguire, 2006; Folstein and Van Petten, 2008;
Duncan et al., 2012). However, while a large proportion of neu-
rons exhibited a general increase in firing rate to all OutSeq items
(OutSeq cells), many others showed the opposite pattern by se-
lectively increasing their activity to all items presented InSeq (In-
Seq cells). Furthermore, as mentioned above, many sequence
cells were conjunctive or fired differentially between the two
types of OutSeq probe trials (repeats and skips). The diversity and
richness of this coding suggests more specific cognitive processes
than simple match/mismatch or novelty detection, including
conjunctive (selective for specific items or ordinal positions) rep-
resentations and the detection of specific types of sequence vio-
lations. Another alternative explanation to consider is that
sequence cells reflect differences in internal motor dynamics or
state that may be present before the port-withdrawal response.
However, the evidence of conjunctive subtypes of sequence cells
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combined with the demonstration of sequence cells when analy-
ses specifically controlled for time spent in port (which aligned
internal motor dynamics across InSeq and OutSeq trials) strongly
suggest that differential activity to InSeq and OutSeq items can-
not be accounted for simply by this potential confound.

It is also important to note that, due to the nature of the task,
limited sampling was expected on some secondary analyses in-
volving subsets of OutSeq items. This is due to the fact that the
overall number of OutSeq probe trials must be kept small (or it
will interfere with the memory of the actual sequence being
tested) and that their exact number and arrangement was ran-
domized every session (to ensure animals could not anticipate
their occurrence). While this sampling issue may have limited
our ability to perform detailed post hoc comparisons in some
conditions, it did not compromise the main results of these anal-
yses or our interpretation of the findings because the critical anal-
yses relied on omnibus tests (tests collapsing across all trial types)
and we were careful to use robust statistical approaches in cases of
small or unequal n’s (G tests and resampling statistics; Sokal and
Rohlf, 1995). For instance, while we had sufficient statistical
power to show that conjunctive sequence cells exhibited differ-
ential activity across odors or sequence positions on OutSeq trials
(using ANOVAs), thorough post hoc comparisons across all pairs
of odors or positions could not be performed. Similarly, when
evaluating behavioral performance using G tests, we had suffi-
cient sampling to statistically evaluate the subjects’ overall per-
formance in each session but could not make specific statistical
statements about the nonsignificant positional G tests obtained
in the Novel1 session. This sampling issue also precluded a thor-
ough comparison of item (odor) coding and ordinal (sequence
position) coding in hippocampal neurons. Since item and ordi-
nal information is overlapping on InSeq items, we could only
examine odor and ordinal selectivity by focusing on OutSeq trials
(in which the two types of information are uncoupled). Our
analyses indicated that while odor-selective cells were more prev-
alent than ordinal-selective cells, both types of selectivity were
represented in our sample. This evidence of odor selectivity is
consistent with previous work (Wood et al., 1999), but to our
knowledge ordinal coding has not been previously demonstrated
in hippocampal neurons. Using modified versions of our exper-
imental design, we plan to further characterize these interesting
findings in future experiments.

The discovery of sequence cells adds to a growing body of
evidence of context-specific activity in hippocampal neurons, in-
cluding spatial, temporal, and other types of contextual informa-
tion. Specific to the temporal context, sequence cells provide
temporal information that complements timing signals recently
demonstrated in hippocampal neurons. In fact, while “time cells”
(MacDonald et al., 2011, 2013) and gradual changes in ensemble
activity (Manns et al., 2007; Mankin et al., 2012) may serve as an
internal framework for representing how much time has elapsed
between events, sequence cells can provide information about the
sequential or ordinal relationships among quickly unfolding se-
ries of events. Therefore, this novel form of context-specific firing
may contribute to our ability to disambiguate events that share
the same items and locations by using another form of temporal
context unique to each episode. Finally, it should be noted that
sequence-cell activity is generally consistent with the view that the
hippocampus contributes to a global temporal context signal by
which memories are temporally organized (Howard and Kahana,
2002; Howard et al., 2014), but that the present analyses were not
designed to specifically test that model. A thorough examination

of the predictions made by the temporal context model will need
to be performed as a separate study.

Recent findings suggest that distinct oscillatory states in
CA1 may reflect dynamic changes in functional coupling and
routing of information within the hippocampus (Colgin et al.,
2009; Igarashi et al., 2014). Within the framework of the pres-
ent task, a potential mechanism for identifying items as InSeq
or OutSeq would be that CA1 compares incoming information
from the lateral entorhinal cortex (LEC; currently presented
item) with information from CA3 (predicted item based on
stored representation of the sequence; Hasselmo and Wyble,
1997; Lisman and Grace, 2005). Our finding of pronounced
slow-gamma oscillations in CA1 (20 – 40 Hz) early during
odor sampling is consistent with increased LEC–CA1 coupling
when information about the presented item is being processed
(Igarashi et al., 2014). However, we did not observe strong
oscillations in the �40 – 60 Hz range (a slightly faster “slow
gamma” than that described here and in Igarashi et al., 2014),
which are thought to reflect CA3–CA1 coupling (Colgin et al.,
2009). An alternative hypothesis is that information flow be-
tween CA3 and CA1 occurred primarily during sharp wave
ripple events, which were frequently observed between odor
presentations. We are pursuing multisite recording studies to
provide a detailed characterization of the flow of information
within this circuit during task performance.

To our knowledge, this is the first study to provide compel-
ling evidence that the hippocampus codes for the specific se-
quential position of nonspatial items and that this coding is
important for sequence memory. These findings suggest that
memory-based sequence coding in the hippocampus extends
beyond the domain of spatial trajectories and thus provide
critical support for theoretical models proposing that se-
quence coding is a fundamental computation of the hip-
pocampus (Levy, 1996; Skaggs et al., 1996; Lisman, 1999;
Howard et al., 2005, 2014; Foster and Knierim, 2012). In fact,
encoding nonspatial sequences of events may reflect similar
computations to encoding spatial trajectories, as suggested by
recent mathematical models showing that the computational
architecture of the hippocampus can support spatial, tempo-
ral, and sequential capacities (Howard et al., 2005, 2014). Our
findings also add to a growing body of research showing that
hippocampal neurons represent a large range of general and
specific information about events, including item, spatial,
temporal, and reward information (Wood et al., 1999; Manns
et al., 2007; MacDonald et al., 2011, 2013; McKenzie et al.,
2013, 2014). These rich, multifeatured contextual representa-
tions in the hippocampus are consistent with its position atop
a hierarchy of associative pathways integrating content-rich
memories across multiple systems as well as with its critical
role in episodic memory (Eichenbaum et al., 2007; Allen and
Fortin, 2013; Knierim et al., 2014).
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