Nonspatial sequence coding varies along the CA1 transverse axis

Chi-Wing Ng, Gabriel A. Elias, Judith S.A. Asema, Timothy A. Allen, Norbert J. Fortin

A Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
B Department of Psychology, Florida International University, Miami, FL 33199, USA

1. Introduction

Considerable research indicates the hippocampus is critical to episodic memory, the ability to recall one’s past experiences. More specifically, the hippocampus, which receives a strong convergence of input from cortical regions, is thought to play a key role in associating in-formation about specific events with the spatial and temporal contexts in which they occurred [1–4]. Consistent with this view, neurons in hippocampal subregion CA1 have shown selectivity for specific stimuli, spatial locations, as well as specific time periods or temporal relationships (e.g., [5–8]). Importantly, these different coding properties may not be uniformly distributed within CA1, as distal CA1 (toward sub-iculum) is more strongly associated with the lateral entorhinal cortex (LEC) and proximal CA1 (toward CA3) with the medial entorhinal cortex (MEC; [9–12,4]).

Recent evidence suggests that distal CA1 and LEC are anatomically and functionally related and play a key role in supporting nonspatial forms of memory. Distal CA1 receives stronger projections from LEC than MEC, whereas proximal CA1 shows the opposite pattern [9,10,13,12]. In addition, both distal CA1 and LEC neurons represent nonspatial attributes of experiences, such as the presentation of specific objects, odors, and other sensory stimuli [14–17,7]. The two regions also show functional coupling during behavior, in the form of highly coherent oscillations in the 20–40 Hz range [7]. Similarly, expression of the immediate early gene Arc is higher in distal than proximal CA1 during nonspatial recognition memory performance [18].

In contrast, accumulating evidence suggest the functional relationship between proximal CA1 and MEC is centered on the processing of...
spatial information. In fact, MEC neurons, which include grid cells, border cells, and head direction cells, provide dynamic mapping of the animal’s location during navigation [19–21], whereas LEC neurons show weak spatial modulation [22,27]. Relative to distal CA1 cells, place cells in proximal CA1 are more spatially selective, carry more spatial information, show higher rate remapping following changes to the environment, and exhibit stronger theta phase-coupling with spatially tuned MEC cells [23–25]. Relative to distal CA1, proximal CA1 also shows higher immediate early gene (c-fos) activation during memory retrieval for spatially-cued contextual fear, and proximal (but not distal) CA1 lesions abolish such memory retrieval [26].

Although this segregation in the representation of spatial and non-spatial event information along the transverse (proximodistal) axis of CA1 is compelling, it is unclear how information about the temporal context of events is distributed along the same axis. Is it more prevalent in distal CA1 because it is nonspatial information, or in proximal CA1 due to overlapping demands or computations with spatial information? Or does it exhibit a different pattern or gradient altogether? To address this issue, we re-examined a previously published dataset in which we recorded neural activity in hippocampal subregion CA1 as animals performed a nonspatial sequence memory task [8]. In this task, rats received repeated presentations of odor sequences (e.g., ABCDE) at a single odor port and were required to identify each item as “in sequence” (e.g., ABCD…) or “out of sequence” (e.g., ABDE…). Our main finding was that a significant proportion of CA1 neurons fired differentially to items presented in or out of sequence (“sequence cells”) and that this form of sequence coding was linked to task performance. Critically, the recordings were performed from tetrodes that spanned much of the transverse axis of dorsal CA1 and included time periods in which the animal was traveling back and forth in the maze (between sequence presentations), thus providing a unique opportunity to directly compare the anatomical distribution of temporal (sequence) coding and spatial coding from the same set of electrodes. Specifically, we tested the hypothesis that neurons exhibiting nonspatial sequence coding (sequence cells) were not uniformly distributed along the transverse axis of CA1, and that their distribution was different than that of neurons exhibiting spatial coding (place cells).

2. Materials and methods

Neural activity was recorded from the transverse axis of dorsal CA1 as rats performed a cross-species, nonspatial sequence memory task recently developed in our laboratory ([27,8]; Figs. 1 and 2). Experimental procedures were reported in detail previously [8] and thus only summarized here. Briefly, the rat version of the task involves repeated presentations of sequences of nonspatial items (odors) and requires subjects to correctly identify each item as being presented “in sequence” (InSeq; by holding their response until the signal at 1.2 s) or “out of sequence” (OutSeq; by withdrawing their response before the signal) to receive a water reward (Fig. 1B). In the present study, we used five-item sequences and included two types of OutSeq probe trials (Repeats: e.g., ABABDE; Skips: e.g., ABCDCE). In each session, a given odor sequence (e.g., Seq1: ABCDE) was presented 30–50 times, with approximately half of the presentations including all items InSeq (ABCDCE) and half including one item OutSeq (e.g., ABEDE). Each odor

subjects to determine whether each item is presented in its correct sequence position (“in sequence,” or InSeq; e.g., ABCDE…) or in the wrong sequence position (“out of sequence,” or OutSeq; e.g., ABDE…). Rats initiated each odor presentation by a nosepoke and identified InSeq or OutSeq items by how long they maintained their nosepoke response (holding until the signal, or ≥1.2s, for InSeq items; withdrawing before the signal for OutSeq items). Approximately half of the presentations included all items InSeq and the other half contained one item OutSeq. A small water reward was delivered just below the odor port after each correct nosepoke response (InSeq or OutSeq). A large water reward was given in the start area (on the other side of the apparatus) when rats correctly identified all five items of a sequence. If the rat committed an error, no water reward was given and the rat was required to return to the start area and wait for the sound indicating the next odor sequence can now be presented.
presentation was initiated by a nose poke (provided 800 ms had elapsed since the previous odor) and was terminated after the rat either held for 1.2 s (signaled by a beep) or pulled his nose out. Water rewards were delivered below the odor port after correct responses (10 µl) and at the opposite end of the track following correct completion of a full sequence (20 µl). Following an incorrect response, a buzzing sound was emitted, and the sequence was terminated. To enhance the segmentation between each odor sequence (completed correctly or not), rats were required to run to the end of the track opposite the odor port before the next sequence could be presented (Fig. 1A), which allowed us to examine spatial coding properties in the same population of recorded neurons. To maximize our sample sizes, our analyses collapsed data from three separate sessions (Well-Trained, Novel1, and Novel2; see [8]), but data from a single session (Well-Trained) is also included for comparison.

2.1. Animals

Subjects were five male Long–Evans rats, weighing 350 g at the beginning of the experiment. They were individually housed and maintained on a 12 h light/dark cycle. Rats had ad libitum access to food, but access to water was limited to 2–10 min each day, depending on how much water they received as reward during behavioral training (3–6 ml). On weekends, rats received full access to water for ≥12 h to ensure adequate overall hydration. Hydration levels were monitored daily. All procedures were conducted in accordance with the Institutional Animal Care and Use Committee.

2.2. Equipment and stimuli

The apparatus consisted of a linear track (length, 150 cm; width, 9 cm), with walls angled outward (30˚ from vertical; height, 40 cm). An odor port, located on one end of the track, was equipped with photo-beam sensors to precisely detect nose entries and was connected to an automated odor delivery system capable of repeated deliveries of multiple distinct odors. Two water ports were used for reward delivery: one located under the odor port, the other at the opposite end of the track. Timing boards (Plexon) and digital input/output boards (National Instruments) were used to measure response times and control the hardware. All aspects of the task were automated using custom Matlab scripts (MathWorks). A 96-channel Multichannel Acquisition Processor (MAP; Plexon) was used to interface with the hardware in real-time and record the behavioral and electrophysiological data. Odor stimuli consisted of synthetic food extracts contained in glass jars (A, lemon; B, rum; C, anise; D, vanilla; E, banana; V, almond; W, cinnamon; X, coconut; Y, peppermint; Z, strawberry) that were volatilized with desiccated, charcoal-filtered air (flow rate, 2 l/min). To prevent cross-contamination, separate Teflon tubing lines were used for each odor. These lines converged in a single channel at the bottom of the odor port. In addition, an air vacuum located at the top of the odor port provided constant negative pressure to quickly evacuate odor traces. Readings from a volatile organic compound detector confirmed that odors were cleared from the port 500–750 ms after odor delivery (inter-odor intervals were limited by software to ≥800 ms).

2.3. Training

Naïve rats were initially trained to nosepoke and reliably hold their nose for 1.2 s in the odor port for a water reward. Odor sequences of increasing length were then introduced in successive stages (A, AB, ABC, ABCD, and ABCDE) upon reaching behavioral criterion of 80% correct over three consecutive sessions per training stage. In each stage, rats were trained to correctly identify each presented item as either InSeq (by holding their nosepoke response until the signal at 1.2 s to receive a water reward) or OutSeq (by withdrawing their nose before the signal to receive reward). There were two types of OutSeq items in the dataset: Repeats, in which an earlier item was presented a second time in the sequence (e.g., ABADE), and Skips, in which an item was presented too early in the sequence (e.g., ABDE, which skipped over item C). Although our previous work has revealed important differences in performance and neural activity on Repeats and Skips [2–4], this distinction was beyond the scope of the present analyses and not further discussed here. Note that OutSeq items could be presented in any sequence position except the first (i.e., sequences always began with odor A, though odor A could also be presented later in the sequence as a Repeat). After reaching criterion performance on the five-item sequence (> 80% correct on both InSeq and OutSeq items, over three consecutive sessions), rats underwent surgery for microdrive implantation.

2.4. Surgery

Rats received a preoperative injection of the analgesic buprenorphine (0.02 mg/kg, s.c.) ~10 min before induction of anesthesia. General anesthesia was induced using isoflurane (induction: 4%; maintenance: 1–2%) mixed with oxygen (800 ml/min). After being placed in the stereotaxic apparatus, rats were administered glycopyrrolate (0.5 mg/kg, s.c.) to help prevent respiratory difficulties. A protective ophthalmic ointment was then applied to their eyes, and their scalp was locally anesthetized with marcarein (7.5 mg/ml, 0.5 ml, s.c.). Body temperature was monitored and maintained throughout surgery and a Ringer’s solution with 5% dextrose was periodically administered to maintain hydration (total volume of 5 ml, s.c.). The skull was exposed following a midline incision and adjustments were made to ensure the skull was level. Six support screws (four titanium, two stainless steel) and a ground screw (stainless steel; positioned over the cerebellum) were anchored to the skull. A piece of skull ~3 mm in diameter (centered on coordinates: −4.0 mm AP, 3.5 mm ML) was removed over the left hippocampus. Quickly after the dura was carefully removed, the base of the microdrive was lowered onto the exposed cortex, the cavity was filled with Kwik-Sil (World Precision Instruments), the ground wire was connected, and the microdrive was secured to the support skull screws with dental cement. Each tetrode was then advanced ~600 µm into the brain. Finally, the incision was sutured and dressed with Neosporin and rats were returned to a clean cage, where they were monitored until they awoke from anesthesia. One day following surgery, rats were given an analgesic (flunixin, 2.5 mg/kg, s.c.) and Neosporin was reapplied to the incision site.

2.5. Electrophysiological recordings

Each chronically implanted microdrive contained 20 independently drivable tetrodes. Following the surgical recovery period, tetrodes were slowly advanced over a period of ~3 weeks while monitoring established electrophysiological signatures of the CA1 pyramidal cell layer (e.g., sharp waves, ripples, and theta amplitude). Voltage signals recorded from the tetrode tips were referenced to a ground screw positioned over the cerebellum and filtered for single-unit activity (154 Hz to 8.8 kHz). The neural signals were then amplified (10,000–32,000 ×), digitized (40 kHz), and recorded to disk with the data acquisition system (MAP, Plexon). Action potentials from individual neurons were manually isolated off-line using a combination of standard waveform features across the four channels of each tetrode, interspike interval distributions for each isolated unit, and cross-correlograms for each pair of simultaneously recorded units on the same tetrode (Offline Sorter, Plexon). A total of 713 single units were recorded over 13 sessions (Well-Trained: n = 5 rats; Novel1: n = 4; Novel2: n = 4). Units were classified as putative pyramidal neurons (n = 599) and interneurons (n = 114) by previously identified characteristic firing rates and valley-to-peak spike widths [28–30,8], with both types of neurons included in our analyses. To confirm recording sites, current was passed through the electrodes before perfusion (0.9%
PBS followed by 4% paraformaldehyde) to produce small marking lesions, which were subsequently localized on Nissl-stained tissue slices.

2.6. Tetrode placements along the transverse axis

Tetrodes were organized in a rectangular array along the mediolateral axis of CA1 (centered on −4.0 mm AP, with the long axis spanning approximately 2 mm–5 mm ML). Recorded neurons were grouped according to their targeted section of the mediolateral axis of CA1 and divided into four mediolateral-to-lateral sections (Fig. 2), in which section 1 was the most medial (beginning at −2 mm ML) and section 4 was the most lateral (ending at 5 mm ML). Although the mediolateral and proximodistal axes are not directly aligned, our recordings sampled from the distal (section 1), intermediate (section 2, and part of section 3), and proximal (section 4, and part of section 3) extent of CA1 described in other studies (e.g., [23,25]; though these studies had a more extensive sampling of distal CA1). Note that our objective was to match the CA1 boundaries described in these studies by using the thickening of the cell layer observed as CA1 transitions into CA2 (proximal boundary) or subiculum (distal boundary) as the main indicator. When this thickening of the cell layer was difficult to visualize on a particular slice (e.g., when the marking lesions obscured the boundary, as in Fig. 2), we supplemented this information by using the location of the boundaries identified by Henriksen et al. [23] in examples from corresponding slices.

Although the number of tetrodes was closely matched across the four sections, the number of tetrodes with isolated cells (sections 1–4: 12, 16, 13, 14) and the number of recorded cells (145, 233, 153, 182) were not identical. Therefore, the proportions of sequence cells or place cells reported were normalized to the total number of cells recorded in the corresponding section (see Table 1 for proportions for each animal). Importantly, expected values for the G-test were also normalized to the corresponding number of cells per section to control for differences in sampling. Finally, the ratios of putative pyramidal/interneuron cells recorded across the same four sections were 5.3, 6.5, 5.1, and 4.2, and the average firing rates were 1.9 ± 0.38, 1.8 ± 0.27, 2.2 ± 0.51, 2.4 ± 0.38, and 2.1 ± 0.19.

2.7. Sequence coding analyses

2.7.1. Sequence cells

As described in our previous study [8], sequence cells are neurons that exhibit statistically significant differences in firing rate on InSeq vs OutSeq trials. These cells were identified using resampling, nonparametric statistics [31–33], as spiking activity often violates the assumptions of normality and homogeneity of variance required for traditional (parametric) statistics. Spikes were binned into 50 ms bins, a bin size that helps capture potential firing rate dynamics within trials (e.g., bursting activity) during data visualization and analysis. However, to limit the number of statistical comparisons performed, only one statistical test was performed per 250 ms time window (not one test per 50 ms bin). For example, a t ratio was calculated for a given 250 ms time window by comparing all 50 ms bins from InSeq trials (five bins per time window * number of trials) to all 50 ms bins from OutSeq trials (five bins per time window * number of trials). Statistical significance was determined by estimating the probability of obtaining a t ratio this large (or larger) using t ratio distributions obtained by randomly permuting the 50 ms bins (across the two types of trials and the five bins: 1000 permutations). Since two 250 ms time windows were tested (−500 ms to −250 ms, −250 ms to 0 ms; relative to port withdrawal), we applied the Bonferroni correction, such that a comparison was considered statistically significant if this probability was < 0.025 (two-tailed).

Note that the results presented hereafter were obtained using this random bin shuffling (as in [8]) but that, as a comparison, we also generated the distributions by permuting across trials only (preserving the order of the five bins within each trial) and observed nearly identical results (81 sequence cells, compared to 80 with the random bin permutations, with a 94.7% overlap in the cells identified), indicating that differences in activity were primarily accounted by trial type.

Note that this analysis excluded the first item of each sequence, as they were only presented InSeq. To match the overall proportions reported in our previous study [8], we combined the data from the three recording sessions and used the same conservative criterion to identify sequence cells. Under this conservative criterion, only OutSeq trials with odor sampling periods of at least 500 ms are included in the analyses, which excludes many correctly identified OutSeq trials, but ensures that differences are not simply due to limited sampling or to potential differences in internal motor dynamics or state immediately preceding the motor response (see [8]).

2.7.2. Sequential information content

To help quantify the degree to which sequence cells differentiated between InSeq and OutSeq items, we adapted previous measures of information content used in spatial [34] and temporal processing [35]. As in Allen et al. [8], the sequential information content (bits/sec) of each sequence cell was calculated using the following formula:

\[
\text{Sequential Information Content (bits/sec)} = \frac{P_{\text{IN}} (\frac{\lambda_{\text{IN}}}{\lambda}) \text{log}_2 \left(\frac{\lambda_{\text{IN}}}{\lambda}\right)}{\lambda} + \frac{P_{\text{OUT}} (\frac{\lambda_{\text{OUT}}}{\lambda}) \text{log}_2 \left(\frac{\lambda_{\text{OUT}}}{\lambda}\right)}{\lambda}
\]

where \(P_{\text{IN}}\) is the probability of an InSeq trial, \(P_{\text{OUT}}\) is the probability of an OutSeq trial, \(\lambda_{\text{IN}}\) is the firing rate of the cell during InSeq trials, and \(\lambda_{\text{OUT}}\) is the firing rate of the cell during OutSeq trials, and \(\lambda\) is the overall mean firing rate of the cell during odor-sampling periods. Higher sequential information content values indicate greater differentiation in activity between InSeq and OutSeq items. Note that the maximum value would be 1 if the proportion of InSeq and OutSeq trials was identical, but since this is not the case here (OutSeq trials are much less frequent than InSeq trials), higher values can be observed (see Fig. 3E).

2.8. Spatial coding analyses

Although spatial processing is not critical to performance of the odor sequence memory task, rats were required to run to the back of the apparatus to begin the next sequence presentation. This requirement, combined with occasional exploration of the environment, provided enough sampling to perform basic analyses of the spatial coding properties of individual neurons. Note that the place cell analysis included the whole maze but that the information content analysis was restricted to cells with place fields on the central runway, the section of the environment with the most consistent sampling (time spent in each pixel) and spatial behavior.

<table>
<thead>
<tr>
<th>Rat ID</th>
<th>Section</th>
<th># cells</th>
<th>Prop.</th>
<th># cells</th>
<th>Prop.</th>
<th># cells</th>
<th>Prop.</th>
<th># cells</th>
<th>Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2/38</td>
<td>0.05</td>
<td>8/60</td>
<td>0.13</td>
<td>1/11</td>
<td>0.09</td>
<td>8/64</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>5/47</td>
<td>0.11</td>
<td>0/24</td>
<td>0</td>
<td>0.00</td>
<td>5/57</td>
<td>0.09</td>
<td>3/62</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
<td>0.05</td>
<td>2/11</td>
<td>0.18</td>
<td>1/17</td>
<td>0.06</td>
<td>1/14</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>0/24</td>
<td>0</td>
<td>8/92</td>
<td>0.10</td>
<td>0/45</td>
<td>0</td>
<td>1/28</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>6/34</td>
<td>0.18</td>
<td>18/56</td>
<td>0.32</td>
<td>7/23</td>
<td>0.30</td>
<td>3/14</td>
<td>0.21</td>
<td>0.02</td>
</tr>
</tbody>
</table>
2.8.1. Place cells

Place cell analyses were consistent with that of previous studies (e.g., [23,36,25]), with minor parameter adjustments due to the nature of our paradigm and apparatus. The animals’ location in X-Y coordinates was recorded by a behavioral tracking system using headstage-fixed LEDs at a sampling rate of 30 Hz (CinePlex, Plexon). Using the NeuroExplorer software package (Nex Technologies), the environment was divided into pixels of 2.3 × 2.3 cm (i.e., 64 × 64 pixels) and firing rate maps were calculated for each unit (spikes per pixel over time spent in pixel; Gaussian filter width = 3). Pixels with insufficient sampling (< 1 s time spent or < 15 visits) were assigned firing rate values of zero. Only units with at least 100 spikes and an average firing rate above 2 Hz were included in the analysis. Place fields were defined as a contiguous region of at least nine pixels, in which the firing rate of each pixel was at least 1.5 standard deviations above the average firing throughout the maze. Place cells were defined as cells with at least one place field with a field coherence above 0.01.

2.8.2. Spatial information content (runway only)

To help quantify the amount of spatial information provided by each place cell, we calculated the spatial information content (bits/sec) as follows:

\[
\text{Spatial Information Content (bits/sec)} = \left(\sum \frac{P_i \log_2 \frac{\lambda_i}{\overline{\lambda}}} \right) \times \overline{\lambda},
\]

where \(i\) is the pixel number, \(P_i\) is the probability of the occupancy (total time spent at pixel \(i\) divided by total time spent through the maze), \(\lambda_i\) is the average firing rate of pixel \(i\), and \(\overline{\lambda}\) is the overall mean firing rate of the cell during the session [34].

2.9. Analyses comparing coding properties along the transverse axis

We examined the distribution of sequence and spatial coding along the transverse axis using several measures. Statistical comparisons involving numerical data (e.g., F ratios, information content) were performed using one-way ANOVAs, followed by posthoc tests comparing the section with the highest proportion with each of the other three sections (Sequence cells: 2vs1, 2vs3, 2vs4; Place cells: 4vs1, 4vs2, 4vs3; Holm-Sidak correction; Prism 6.0). Information content values were log-transformed for statistical analyses (because of positive skewness), but are displayed in raw values. Note that the same pattern was observed in intermediate CA1 (section 2). To maximize sample sizes, analyses were performed on data collapsed across three separate sessions for each animal (black bars), but results from a single session show similar patterns (Well-Trained session; gray bars). C-E. Magnitude of sequence coding (t ratios of all recorded cells on InSeq vs OutSeq comparison, converted to F ratios) was significantly different across sections (one-way ANOVA), with posthoc tests showing higher values in section 2 than other sections. B. Proportion of recorded cells in each section that met statistical criterion for sequence coding (significant t-test on InSeq vs OutSeq comparison). E, Sequential information content of sequence cells was also significantly different across sections (one-way ANOVA on log-transformed scores), with posthoc tests showing significantly higher values in section 2 than 1 or 4. Note that the same pattern of results was obtained when the two highest information content values in section 2 were excluded from the analysis, indicating this effect was not driven by a few large data points. Gray circles represent information content values for all sequence cells in the present study. Error bars indicate ± 1 SEM. *A*, significant ANOVA; **A**, significant t-test (corrected for the number of comparisons performed).

3. Results

3.1. Nonspatial sequence coding was not uniformly distributed along the CA1 transverse axis

The main objective of the present study was to test the hypothesis that the strength of nonspatial sequence coding varies along the proximodistal axis of CA1. Our previous study discovered that a significant proportion of CA1 neurons fired differentially to items presented InSeq or OutSeq (sequence cells; [8]; see examples in Fig. 3A,B). Up to 26.2% of neurons active in the task (187 of 713) exhibited this coding property; however, the present analyses focused on the subset (11.2%; 80 of 713) that met the most stringent criterion described in Allen et al. [8], which included trials with sampling windows shorter than 500 ms to control for potential differences in internal motor dynamics or state. Although most sequence cells fired preferentially to OutSeq items (58 of 80, 72.5%; e.g., Fig. 3B), a significant proportion showed selectivity for InSeq items (22 of 80, 27.5%; e.g., Fig. 3A). Here, we extend these...
findings by providing evidence that this form of nonspatial sequence coding was not evenly distributed along the four sections of the mediolateral/proximodistal axis from which we recorded.

Using multiple measures, we found that the strength of sequence coding varied across sections, and was highest in intermediate CA1 (section 2; Fig. 3C–E). First, we examined the magnitude of sequence coding across all recorded cells per section by analyzing each cell’s t ratio on the InSeq vs OutSeq test (converted to F ratios to be consistent with Allen et al. [8]). This primary analysis confirmed a significant difference across sections ($F_{(3,709)} = 3.365, p = 0.0183$), with values significantly higher in section 2 than sections 1, 3, or 4 ($t_{(2v,709)} = 2.518, p < 0.05$; $t_{(2v,709)} = 2.305, p < 0.05$; $t_{(2v,709)} = 2.563, p < 0.05$; Fig. 3C). Then, we examined whether the same pattern was observed when our analyses focused exclusively on sequence cells (the cells with a significant t ratio on InSeq vs OutSeq comparison). Specifically, we focused on examining whether the proportion of sequence cells (normalized to the number of cells recorded in each section; Fig. 3D) and their sequential information content values (an indicator of how much information a given cell provides about the object information) are more strongly represented in distal CA1 than in proximal CA1. Overall, these findings are consistent with other reports showing that nonspatial information processing is not evenly distributed along the proximodistal axis of CA1, including studies showing that odor or object information is more strongly represented in distal CA1 than in proximal CA1 [17,18,7]. Our findings add to these studies by suggesting that functional dissociations may also extend to intermediate CA1, a region those previous reports did not specifically examine.

3.2. Spatial coding showed a different distribution compared to nonspatial sequence coding

Although spatial processing is not critical to performance of the odor sequence memory task, rats were required to run to the back of the apparatus to begin the next sequence presentation (see Fig. 1A). This requirement, combined with occasional exploration of the environment, provided sufficient sampling to perform basic analyses of the spatial coding properties of individual neurons. Therefore, using the same set of animals and tetrodes as above, we were able to examine how spatial coding was distributed along the same CA1 axis.

Among the 713 recorded neurons, we found 257 units (36.0%) that showed firing to specific locations within the maze (place cells; see
examples in Fig. 4A). Our main finding is that the proportions of place cells across the four sections were significantly different than that of sequence cells (two-factor G-test: $G_{3,1\text{N} = 337} = 9.547, p = 0.0240$). In fact, in contrast to the distribution of sequence cells reported above, the proportion of place cells increased toward proximal CA1 (Fig. 4B). These observations were supported by G-tests, which showed that the proportion of place cells was significantly different across sections ($G_{3,1\text{N} = 22.235, p = 0.0001}$). Note that this effect was primarily driven by place cells with a single place field, as few cells had multiple place fields and their distribution was consistent across the four sections ($<10\%$). We then explored the spatial information content provided by place cells across the four sectors. We limited our analysis to putative pyramidal neurons with place fields on the runway (86 of 257; 33%), the section of the maze in which the animals’ behavior, speed, and sampling were most consistent. Although the difference in values across sections did not reach significance ($F_{3,1\text{N} = 1.509, p = 0.2184}$), high spatial information content values were observed in proximal CA1, which sharply contrasts with the pattern observed with sequential information content (compare Fig. 4C with Fig. 3E). Notably, we re-ran these analyses using data from only one session per animal (Well-Trained session) to control for the possibility that some cells may have been counted more than once, artificially increasing statistical power. This possibility does not appear to be the case since this approach produced similar results (see gray bars in Fig. 4B,C). Specifically, the proportion of place cells across sections remained significantly different than expected by chance ($G_{3,1\text{N} = 9.832, p = 0.02}$) and the spatial information content values remained high toward proximal CA1 (although the ANOVA now reached significance, $F_{3,265} = 3.357, p = 0.0340$, the linear trend did not, $p = 0.0760$).

Secondary analyses suggest that, though place fields were found across the three major maze components (odor port area, runway, and start area), a higher proportion was observed in the start area ($G_{2,1\text{N} = 19.237, p < 0.0001}$) and particularly in proximal CA1 (section 4; $G_{2,1\text{N} = 14.984, p = 0.0018}$; Fig. 4D). Notably, we also found a subset of neurons that exhibited both sequence and spatial coding (45 of 713 units; 6.3%) and the prevalence of these cells also increased toward proximal CA1 ($G_{2,1\text{N} = 10.84, p = 0.013}$; Fig. 4E).

Overall, although our nonspatial memory task was not optimally designed for evaluating spatial coding properties of hippocampal CA1 neurons, the present results suggest the prevalence of spatial coding increases towards proximal CA1, a finding consistent with recent reports [23,25]. The present study extends these findings by demonstrating, using the same set of animals and electrodes, that spatial and nonspatial sequence coding are differentially distributed along the proximodistal axis of CA1.

4. Discussion

Recent studies have indicated that the processing of spatial and nonspatial information is not uniformly distributed along the transverse (proximodistal) axis of CA1, with spatial information being preferentially represented in proximal CA1 [23,25] and nonspatial information in distal CA1 (e.g., odors or objects; [15,17,18,7]). The main objective of the present study was to examine how sequence cells, which code for the temporal context in which events occurred (in this case, whether or not an odor was presented in the correct sequential order), were distributed along the same axis. There were three main possibilities for how this form of nonspatial sequence coding could be distributed: (1) it arises from ensembles representing nonspatial information and thus should be primarily clustered in the distal end of CA1, (2) it shares fundamental principles with spatial coding (e.g., spatiotemporal context representation) and thus should be primarily represented in the proximal end of CA1, or (3) it is associated with a different type of integration (or convergence of inputs) and thus should result in a different distribution than the previous two possibilities. Our findings support the third possibility. Specifically, we found that the strength of sequence cell coding significantly varied along the transverse axis of CA1, with a peak in intermediate CA1 (section 2). Notably, all measures (magnitude, prevalence, and sequential information content) were low in distal CA1 (section 1), a sector in which odor or object information was reported in previous studies [17,7]. Importantly, this distribution was significantly different than that of place coding, which showed an increasing proportion of cells with place fields toward proximal CA1 (section 4). These results suggest that nonspatial sequence (temporal) coding is differentially distributed than item or spatial coding in CA1.

Our findings corroborate recent reports in the literature. For instance, we found that both types of cells (sequence cells and place cells) were observed across the transverse axis, but that there were significant variations in their prevalence and/or specificity along the axis. This finding is consistent with recent place cell studies sampling the full transverse axis of CA1. In a study in which animals performed a random foraging task, Henriksen et al. [23] reported place cells across the proximodistal axis but that spatial precision increased toward proximal CA1 (measured as an increase in spatial information content). In another study, Igarashi et al. [7] recorded from CA1 cells during learning of an odor-place association. Of all cells with a place field at the odor port on the first day of training (which were observed in distal and proximal sectors), the spatial coding properties of proximal CA1 cells remained consistent throughout training, whereas distal CA1 cells gained odor modulation. Similarly, immediate early gene expression was reported in both proximal and distal CA1 in animals performing odor or object recognition tasks, but the expression was significantly higher in distal CA1 [17,18]. These findings are consistent with our observations that proximal CA1 appears primarily involved in the processing of spatial information, whereas other sectors can process nonspatial information. The present study extends these previous findings by providing the first characterization of the distribution of sequence coding (spatial or nonspatial), as well as a direct comparison with the distribution of place cell coding. Our study also complements previous work examining the distribution of nonspatial information, which has primarily focused on odor or object recognition memory [17,18], by examining this coding in intermediate CA1 (in addition to distal and proximal CA1) in a paradigm that requires subjects to remember temporal relations among events, a critical contribution of the hippocampus to episodic memory [37,2,3].

It is important to note that the present study was not originally designed to test this specific hypothesis, so a few limitations and alternative explanations should be considered. First, the placement of our tetrode array yielded a more limited sampling of distal CA1 than recent studies specifically intended to sample the full transverse axis [23,7,25]. However, previous studies have shown nonspatial modulation in the section of distal CA1 from which we recorded [17,18,7]; thus, had sequence coding been localized in the same region, our sampling should have been sufficient to detect it. The mediolateral orientation of our tetrode array also means that our sampling was not perfectly aligned with the transverse axis, such that distal and proximal CA1 were sampled at slightly different septo-temporal levels. Though this difference was small and unlikely to produce the observed pattern of results on its own, this possibility should be assessed in future studies. Second, our experimental paradigm made it difficult to directly contrast the distribution of item and of sequence coding, as both types of information are overlapping on most trials (i.e., a cell responding to odor B in ABCDE may be coding for “odor B” or for “odor B when presented InSeq”). In our previous study [8], we successfully confirmed the presence of odor-selective cells by focusing our analyses on subsets of trials in which the two types of information are decoupled (OutSeq probe trials), but the number of such cells was too small ($n = 15$) for a meaningful examination of their distribution. Third, due to the relatively low incidence of sequence cells (∼11% of cells), we maximized our sample sizes by combining data from three sessions. Although most...
tetrodes were slightly moved after each session and most sessions were not recorded on consecutive days, a subset of the cells may have been counted more than once, which could have artificially increased statistical power. However, the fact that the same patterns are also visible in the data from a single session makes it unlikely that our results are primarily driven by this potential confounding factor. Similarly, although the low incidence of sequence cells precludes a thorough analysis of their distribution in each animal, the observation of a high proportion of sequence cells in section 2 was generally consistent across animals. Fourth, although we have previously examined potential strategies and cognitive representations supporting performance of this task in rodents and humans (see [27,38]), including item-item associations (e.g., “B is followed by C”) or item-position associations (e.g., “C is the third item in the sequence”), the present study was not designed to link the use of a specific strategy with the distribution of sequence coding in CA1. This assessment would require new experiments in which neural activity is recorded while biasing the animals toward the use of distinct strategies using different versions of the task. Finally, our experimental design was not ideal for spatial mapping, as the primary task demands involved performing a complicated nonspatial task in a specific location. Most studies quantifying spatial coding properties do so as animals explore large two-dimensional environments, with no explicit memory requirements, to maximize sampling and homogeneity of behavior. Although our paradigm provided enough sampling to quantify place cell proportions, it limited our ability to provide a detailed characterization of spatial coding properties. This could explain why our spatial information content analyses did not show the linear increase from distal to proximal CA1 reported by others [23]; our distribution was more similar to a step function.

This potential peak in sequence cell coding in intermediate CA1 may indicate this form of temporal context information requires a different type of integration than item or spatial information processing, and may reflect a key convergence of inputs necessary for sequence memory performance. A distinctive feature of intermediate CA1 is that it receives more balanced inputs from LEC and MEC (unlike distal and proximal regions which receive stronger inputs from LEC and MEC, respectively). Our original working hypothesis on the emergence of sequence cells in CA1 focused on functional interactions with LEC and CA3 (see [8]). Specifically, we proposed that sequence cells reflect a comparative process in CA1, determining whether incoming information from LEC (representing the currently presented item) and from CA3 (representing the predicted item based on stored representation of the sequence) is a match (item is “in sequence”) or a mismatch (item is “out of sequence”). The strong oscillations in the 20–40 Hz range observed when animals sampled the odors in the task [8] are consistent with CA1-LEC coupling [7]. However, the distribution of sequence cells observed here suggests that MEC input to CA1 may also play a key role, potentially providing a form of spatiotemporal signal contributing to task performance (e.g., [39]). Such CA1-MEC coupling may have occurred during theta oscillations (e.g., [23]), which were prevalent during task performance (stronger during running bouts, but also present during odor sampling).

It remains to be determined whether sequence cells are specific to CA1. Our recent collaborative results, using high-resolution BOLD fMRI in humans performing the same sequence memory task, revealed strong activity in all hippocampal subregions examined (CA3/CA2, CA1, and subiculum) on the same contrast used to identify sequence cells (InSet vs OutSeq trials; [40,41]). Although this finding indicates all subfields are strongly engaged in the task, the extent to which this activity reflects sequence cell coding in all subregions or distinct subregion-specific contributions remains unclear. It will be particularly important for future studies to shed light on task-relevant coding properties in regions CA3 and CA2. Several prominent computational models have suggested that the unique neural architecture of CA3 (high density of recurrent collaterals) is well suited for sequence coding (e.g., [42–44]), which is consistent with our preliminary findings that CA3 inactivations during task performance impair learning of a novel sequence [45]. Notably, a different form of nonspatial temporal coding was recently reported in CA3 as well as in CA1 (“time cells”; [46]). Recent studies also suggest a potential role for CA2 in temporal coding [47]. Notably, CA2 is located near proximal CA1 (where we recorded few sequence cells) and may provide a different form of temporal signal than that described here (i.e., the passage of time rather than sequence relationships among events).

In conclusion, sequence cell activity is consistent with a fundamental role of the hippocampus in supporting the integration of information about specific items or events with the spatial and temporal context in which they occurred, a function critical to episodic memory [1–4]. The present study shows that the distribution of this coding in CA1 parallels the convergence of inputs from LEC and MEC; it is present throughout the proximodistal axis, but higher in intermediate CA1, suggesting this form of nonspatial sequence coding emerges from complex functional interactions among hippocampal and entorhinal subregions. Ongoing studies focusing on quantifying sequence coding in these subregions, as well as identifying the distinct contribution of specific projections within this network of structures, will be needed to further address this important issue.

Conflicts of interest

The authors declare no competing financial interests.

Acknowledgments

This research was supported in part by the National Science Foundation (awards IOS-1150292 and BCS-1439267 to N.J.F.), National Institutes of Health (T32 DC-010775 support for G.A.E.; T32 AG-000096 support for J.S.A.A.), the Whitehall Foundation (award 2010-05-84 to N.J.F.), and the University of California, Irvine. We thank Kei Igarashi and members of the Fortin Lab for useful discussions on the present work.

References

[10] P.A. Naber, F.H. Lopes da Silva, M.P. Witter, Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum, Hippocampus 11 (2) (2001) 99–104.
influence of objects on place field expression and size in distal hippocampal CA1, Hippocampus 21 (7) (2011) 783–801.

[40] W.B. Levy, A sequence predicting CA3 is a flexible associate that learns and uses context to solve hippocampal-like tasks, Hippocampus 6 (1996) 579–596.

